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INTRODUMtiON

1. Introduction

This report documents basic computer science research in Carnegie Mellon University's Computer Science

Department. The Information Processing Techniques Office of the Defense Advanced Research Projects

Agency (DARPA) supported this work during the period I January 1981 through 31 December 1983, extended

to 31 December 1984.

The remainder of this chapter describes our research scope and the CMU-CSD research environment.

Chapters 2 through 8 then present in detail our seven major research areas: Distributed Processing, Image

Understanding, Machine Intelligence, Programming Technology, Distributed Sensor Networks, Cooperative

User Interfaces, and VLSI Systems. Sections in each chapter present the area's general research context, the

specific problems.we addressed, our contributions and their significance, and an annotated bibliography. The

index provides access via keywords and system names.

The bibliographies present selected references that, reflect the scope and significance of CMU's contribu-
tions to basic computer science research. Wherever possible particularly for key articles, we have iicluded

abstracts. While we have striven for comprehensive coverage, some documents have regrettably eluded our

efforts. Finally, though basic research does not proceed with the mechanical regularity of industrial produc-

tion, publication dates do indicate progress in the various problem areas. CSD Technical Report dates exhibit

the closest correlation with temporal progress and the report text frequently reappears later. in the more

accessible archival literature,

1.1. Scope of Research

We organize the research reported here under seven major headings. These interrelated categories and

their major objectives are:

o Distributed Processing (DP): Develop techniques and systems for effectively using computer
networks. This effort involves developing a methodology for efficiently utilizing distributed
(loosely connected) personal computers. Research on a concept demonstration system proceeds
in several areas:

o Design and implementation of basic system software facilities including an operating
system kernel, an interprocess communication facility, and a high-level development
environment.

o Integration of subsystems and services at two levels-the user interface and the under-
lying system architecture-in order to provide significant improvement in the produc-
tivity of computer science researchers.

o Design and implementation of two programming systems to support a variety of ap-
plications.

, 1-1



INTRODUCTION

o Development of a distributed file system, one of the principal centralized services that
support both the network of personal computers and larger, time-shared systems.

* Building an interactive document preparation system by merging existing packages
into an integrated environment.

o Extension of current message systems to handle multimedia formats by exploiting the
technology ofpersonal computers and their interconnecting network.

Explore and evaluate alternative techniques for effectively using very large memories. Long-term
goals of this effort focus on designing and constructing a memory hierarchy incorporating video
disk technology. Research in archival memory systems involves the following sub-tasks:

o Build the network-based Central File System.

o Integrate the Central File System into an environment of several heterogeneous com-
puter system

o Investigate data organization and data management strategies for storage media with
characteristics similar to those of video disks.

o Construct a simulation-based tool for design and analysis of memory hierarchies.

9 Image Understanding (IU): Apply knowledge effectively in assisting the image interpretation
process. This work deals with systems that perceive the external world through visual images,
extract useful information, and pass such information tO another system that then employs it to
accomplish some larger task. Research in this area aims at

o Understanding and constructing systems which can comprehend three-dimensional
structure in the environment from a two-dimensional visual image.

o Discovering the representations, algorithms, and control structures required to exploit
pre-existing knowledge about the environment for image understanding.

o Inventing special architectures and programming structures to realize the algorithms
efficiently.

• Machine Intelligence (MI): Investigate ways to utilize knowledge in obtaining intelligent action
by computers. Long range goals of this effort include the discovery of principles which enable
intelligent action and the construction of computer systems which can perform tasks requiring
intelligence. Research in machine intelligence covers a wide range of issues:

o Discovering and analyzing methods of problem solving.

o Discovering and analyzing the ways problems may be represented and how such
representations affect the difficulty of solving the problems.

o Discovering and analyzing processes which produce appropriate internal represen-
tations through recognition and description of external task situations.

o Discovering and understanding control structures and system organizations which can
combine a collection of problem-solving methods and problem representations into an
effective total system.

9 Programming Technology (PT): Increase our ability to produce predictably high-quality software
systems. Research in this area strives to:

o Automate the construction ofcompilers.

•-1.1
11 M MMFka-



INTRODUCI1ON

o Develop a highly secure and reliable system.

o Develop advanced programming environments that facilitate tool integration, system
version maintenance, and project management.

o Conduct basic research in programming technology that is likely to lead to additional
techniques for producing high-quality systems.

* Distributed Sensor Networks: Construct a demonstration system of physically and logically
distributed computers interacting through a communication network to identify, track, and dis-
play the situation of multiple objects in a laboratory environment. This project will involve the
following tasks:

o Evaluate the design and performance of our current Testbed system.

o Extend the Testbed through the addition of capabilities for motion perception, visual
sensing, multi-object tracking, and multi-sensor integration.

o Investigate design and implementation issues basic to distributed computing: ar-
chitecture, language primitives, and descriptive representation.

" Cooperative User Interfaces: Investigate methods for increasing human productivity by improv-
ing the efficiency and effectiveness of man-machine communication. These techniques will be
incorporated in a user interface system and evaluated in the department's research computing
environment. The effort will concentrate on the following goals:

o Shift the design emphasis from convenience of the system builder to that of the system-
user.

o Employ a more cooperative style of user interaction, including the ability to negotiaye
with the user to correct a misunderstanding.

o Apply newly available hardware capabilities to expand and enrich the mechanisms of
communication between man and machine.

* Integrated VLSI Systems: Advance our ability to design and apply in real systems the high-
density digital circuits possible through emerging VLSI technologies. Achieving this objective
relies on several interrelated efforts:

o Shift theoretical attention from computational complexity to developing applied VLSI
algorithms for both chips and programmable arrays.

o Build a system of integrated design tools sufficiently coordinated so that designers can
effectively and routinely carry out their tasks.

o Produce, using these strategies, a VLSI chip that is an integral part of an operational
system and evaluate the performance of that system against realistic criteria.

1.2. The CMU Research Environment

DARPA-supported computer science research in the Carnegie Mellon environment tends to focus around

speeific experimental systems that strive toward particular objectives, for example, developing a distributed

processor system or demonstrating an image understanding system. This report describes approximately two

dozen such activities. Sometimes creating and demonstrating a system will itself represent an appropriate

1-3



INTRODUCTON

scientific objective. At other times some particular performance level constitutes our goal. Often, however,

the system merely provides a vehicle that permits exploring and investigating basic scientific questions. Thus

our work tends to emphasize concept demonstration rather than system engineering. In short, though they

don't always represent ends in themselves, our research systems form a convenient structure for organizing

and discussing DARPA projects at CMU.

A major strength of the Carnegie Mellon University environment is the synergy resulting from the close

cooperation and interdependence of various research efforts despite their diverse foci. For example, AI

efforts have often needed the benefits of novel computer architecture and software techniques. Conversely,

techniques developed in AI have been used to solve some of the combinatorial problems arising in compiler

design and circuit layout. Close interaction and cooperation between the various research efforts has led to

new and innovative approaches and solutions, and has significantly contributed to the intellectual ferment

that makes Carnegie Mellon University unique in the computer science area.

We have no administrative structure corresponding to our effort organization. We consist simply of faculty,

research scientists, and graduate students of the Computer Science Department, with facility support divided

between an Engineering Laboratory and a Programming Group. The remaining structure is informal. This

organizational style minimizes barriers between efforts and promotes the interactions and synergy reflected in

the work distribution shown in Table 11.

144



INTRODUCTION

Number of
Areas DP IU MI PT DSN CUI VLSI

Eugene Ball 2 x 0
-Jon Bentley 1 0
Mario Barbacci 1 x
Hans Berliner 1 x
Roberto Bisiani 2 x x
Scott Fahlman 2 x x
Allan Fisher 1 x
Charles Forgy 1 x

* Nico Habermann 1 ]
Samuel Harbison 1 x
Phil Hayes 1 0

*Peter Hibbard 2 0 x
Paul Hilfinger 1 x
Anita Jones 1 x

*Takeo Kanade 1 0
Elaine Kant 1 x
John Kender 1 x
H. T. Kung 1 0
John McDermott 1 0
Hans Moravec 1 x
John Nestor 1 x
Joe Newcomer 1 x
Allen Newell 1 03
Richard Rashid 2 x 03
Raj Reddy 4 0 x 0 x
George Robertson 1 0
Mike Rychener 2 x x
William Scherlis 1 x
Mary Shaw 1 x
Herb Simon 1 x
Bob Sproull 1 0
Guy Steele 1 x
Howard Wactlar 1 x
Bill Wulf 1 0

x = Active research in this area
[] = Responsible for area

Table 1-1: Faculty effort distribution, 1981-84
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RESEARCH IN DISTRIBUTED PROCESSING

.0 2. Research in Distributed Processing
Advances in network technologies and the increasingly sophisticated requirements of users present us with

the challenge of developing more effective computing facilities. Traditionally, resources have been provided

by timeshared systems. High-performance personal computers-powerful, single-user machines providing

quality graphics support such as a bit-map screen, a pointing device, and good networking capabilities-offer

substantial benefits over timeshared systems. Their consistently high availability of computing cycles and

high bandwidth at the man-machine interface allow a user-to-software interaction level that timeshared

environments cannot match. Timeshared systems do, however, allow extensive communication among users

and impose a coherent set of standards on the tools they provide. A shift away from a timeshared environ-

ment to a personal computing environment must retain these features.

Our research goal in Distributed Processing was to exploit networked personal computers effectively by

developing techniques and systems that will:
* Support large programs
9 Provide simultaneous multiprogramming capabilities
9 Offer language-independence
9 Enforce a high degree of protection
* Exploit the hardware's unique features (e.g. graphics capabilities)
* Be easily portable to other architectures

To attain our goal Distributed Processing researchers worked closely with other project scientists and

developed Spice, the Scientific Personal Integrated Computing Environment. Spice includes a complete

software system, over 160 scientific personal computers, and a packet switching network providing high-

bandwidth interprocess communication.

Distributed Sensor Net researchers developed the Spice operating system kernel, Accent (see also Section

6.1) [Rashid 84]. During this contract period we also implemented prototypes for several other projects that

utilize Spice services, though we do not support them directly. They include: the Gandalf Aloe editor-

generator system, the Descartes user interface management system, the DP Drawing Program, the Spoonix

Unix simulator, the Matchmaker remote procedure call generator, and the Cousin Cooperative User Interface

system (see Chapter 7). Our efforts can bc broken down into the following categories.
" Programming languages and environments
" Programs and facilities
" Archival memory: the distributed file system

2-1



RISEARCII IN DISTRIBUTED PROCFSSING

2.1. Programming Languages and Environments

To simplify transporting Spice to other personal machines, we wanted to make Spice language independent

and provide it with interlanguage communication facilities. We achieved this by supplementing the Perq's

manufacturer-supplied Pascal tools with comprehensive programming environments for Ada and Lisp, each

with its own microcode interpreter.

We chose a subset of Ada syntax and semantics for Spice that allowed us to use a modified version of the

Perq Pascal compiler. Since the compiler generates the same object code as the Pascal compiler, subset Ada

and Pascal are link level compatible. Ada researchers worked on designing and building: an incremental Ada

compiler, a source-level debugger called Kraut a run-time representation for Ada programs suitable for

interactive programming environments, and various program management tools [Hibbard 81].

No existing Lisp could be ported directly to Spice because of Perq microcode limitations. Thus we chose to

develop Common Lisp (a consolidation of Lisp -development efforts) [Steele 84] and from that, Spice Lisp.

Our design of Common Lisp and implementation of Spice Lisp is now complete [Fahlman 84].

One of the important problems encountered in implementing large distributed systems is debugging their

code. In addition to traditional process-level debugging, developers need to know the system's state, under-

stand system component interconnections, and monitor communication among processes. During the con-

tract period, we built two debugging facilities addressing these issues: BlackFlag and Kraut.

We developed BlackFlag as a display-oriented debugger for the DSN testbed system (discussed in Chapter

6). Built as a collection of cooperating processes, BlackFlag facilitated several important debugging opera-

tions:

" It provided a graphical display of the system's process communication structure.

" It allowed the kernel to intercept, monitor, and even modify messages before passing them on to
their destination processes.

" It provided for source-level debugging of individual processes.

The Kraut debugger continued, in many respects, the BlackFlag effort. While BlackFlag was largely a

prototype system that demonstrated the ideas behind distributed debugging, Kraut evolved to be the produc-

tion debugger for the Accent environment- supporting source-level debugging of both Pascal and Ada
programs. Kraut provides most of the commands of traditional symbolic debuggers, such as setting of

breakpoints, state inspection/modification and source file access. It also contains low-level debugger com-

mands for inspection of the target process at the code and microcode level. A novel feature of Kraut is its use

of Path-Rules as a mechanism for describing conditions to monitor and test on running programs. It allows

2-2



R3FSARCII IN DISTRIBUTED PROCESSING

the use of graphics to represent the state of variables and other information about a program. We imple-

mented Kraut using a rule-based paradigm that provided substantial flexibility and user tailorability. We also

began work. to be reported on later, on solutions to problems related to the portability of such debugging

features across machines and for different languages.

2.2. Programs and Facilities

To make Spice a feasible alternative to timeshared systems, we developed numerous application systems,

including a text editor, a document formatter, a graphics package, and a mail system. Our user interface

package, distributed resource manager, and maintenance programs help make Spice a habitable working

environment. Most Spice programs follow system-wide conventions to answer simple help requests and the

Spice Documentation group has produced a variety of user documents, including an introductory guide, a

guide to system utilities, and manuals for all major components.

2.2.1. Application programs

Spice offers several programs to handle text. Early in the project we built an emacs-like editorOil [Wright

84], based on Pepper, an editor that ran on Perqs before Accent was implemented. We later developed Mint, a

Scribe-like document formatter [Anderson 84].

We designed and wrote the Spice mail system, Mercury, in Ada. It provides flexibility and power similar to

the RdMail facility developed at CMU for the PDP-10 (Tops-10). Mercury allows users to read, answer, store,

retrieve, and organize their electronic mail. We originally brought Mercury up with the Subada compiler on a

vAx and then ported it, along with the SubAda compiler to Perqs in spring of 1984. A mail delivery

mechanism based on transparent Accent message passing to remote vAXes (where mailboxes were

maintained) was implemented to support the Perq implementation of Mercury.

2.2.2. User Interface Systems

Canvas [Ball 811, the Spice graphics utility, provides two levels of abstraction for modeling the physical

screen. The first is the canvas, which is a region having a particular user-defined coordinate space. Graphics

operations--painting with a color, drawing lines, selecting and using a particular font--take place in terms of

the canvas coordinates. These operations correspond to the raster operations that would be performed on the

physical screen were the program to have direct access to it. The second level of abstraction provides for a

canvas that is not necessarily visible. The visibility and the position on the screen of pixels that have been

written into a canvas are determined by viewport and the associated refresh tree.

We devised various systems for the creation and support of user interfaces within the Spice environment.

2-3
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RIS IARCII IN DISTRIBUTED PROC SSING

The multiplexing of screen, keyboard, and pointing device among several processes was originally performed

by Canvas, a separate process that had a part of its virtual address space mapped to the physical memory used

for the screen's bit-map. A user interface package called Environment supplied the means of invoking

programs, and the mechanism for providing them with the environment they needed during execution. In

particular it provided programs with parameters, switches and commands, and means for presenting infor-

mation on the screen.

Sapphire is the successor to Canvas/Environment as the window managing system for the Spice environ-

ment. Sapphire supports a full implementation of the covered window paradigm (where the rectangular

windows can overlap like pieces of paper on a desk). Windows can cover each other, can extend off the screen

in any direction, or may lie entirely offscreen. Windows in Sapphire usually have title lines and borders.

Application programs may create windows without either, but the borders are useful for showing where the

windows are, and the title lines are useful for displaying status information. In Spice, the title line might

contain the current working directory. A window running a compiler might have the version number of the

compiler and the name of the file being processed displayed in the title line. One of Sapphire's goals is to

provide a rich and powerful user interface without restricting the user interface of applications running under

it. This is important, since the user will be giving commands to the application program far more often than

to the window manager. Sapphire can be used to support many different types of applications with different

input and output requirements. Sapphire uses icons to enhance the user's productivity when executing

multiple tasks concurrently. Users will often to have several tasks performed simultaneously to increase their

efficiency. However, people easily lose track of what they are doing and need aids to help plan, monitor, and

control the various tasks operating at the same time. The icons in Sapphire present six kinds of information

about the process being run, as well as two kinds of information about the status of the window:
" Process name
* Linear progress bar, showing approximate progress as a percentage of the entire job
" Random progress bar, showing by a constantly changing pattern that progress is being made,

though without indicating "how much"

" Error status
" Waiting for user input

" Application defined attention signal
* Listener status, by highlighting the border of the icon of the Listener window
" Offscreen status, by showing three dots (...) to indicate a window is no longer visible

2-4
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RESEARCh IN DISTRIBUTED0 PROCESSING

2.2.3. Distributed Resource Management

The sharing of network resources is complicated by issues of security and autonomy, since a network of

personal computers may be composed of nodes that are completely controlled by their owners. A network of

personal computers has the characteristic that its resources are distributed. In spite of the advantages of

* distributed resources, a nctwork of personal computers also has some disadvantages. For example, a user may

need to access data that is only available on a remote machine. Security may dictate that the data cannot be

* transferred in whole to any other machine; thus, the user must use a remote processor to access the data.

Another disadvantage is that the physical distribution of resources may not match the distribution of the

demands for service. Thus, some resources may be idle while others are overloaded. Finally, even though a

personal computer may have significant computational capabilities, its power is lcss than that expected of a

large mainframe computer. As a consequence, a network may collectively have tremendous computing

power, but its computing resources are distributed. Programs that might be practical on a time-shared

mainframe computer may be inappropriate for personal computers because of the amount of computation

involved. All of these problems can be alleviated by resource sharing.

To facilitate sharing in this sort of environment, an operating system component called the Butler was

proposed (Dannenberg 82]. As a host, the Butler is responsible for administering a sharing policy on its local

machine. This includes authenticating sharers, granting rights in accordance with a locally established policy,

and creating execution environments for guests. As an agent, the Butler negotiates with hosts on remote

machines to obtain resources requested by a client, and performs authentication to discourage a remote host

from exploiting the clientL

To protect a m--chine from exploitation by a guest process, the Butler relies upon a capability-based

accounting system called the Banker, which keeps track of resource utilization by guests, and provides

mechanisms for revoking service. Accounting offers a solution to the problem of laundered requests, where a

guest performs malicious operations through a privileged intermediary. The Banker's revocation mechanism

is useful in notifying all of a guest's servers that the guest's privileges have been reduced.

Although negotiation is designed to reduce the probability of revocation, a hierarchical recovery scheme is

supported by the Butler as an aid to the application programmer in cases where revocation does occur. The

three recovery methods are warning, where the guest is allowed to perform application specific actions to free

resources, deportation. where the guest is transported to another site by Butlers, and termination, where the

guest is simply aborted.

We implemented a Butler prototype that,though it provides only partial functionality of the Butler, does

support a real distributed processing application. We limited the implementation to remote invocation and
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deportation, because these are areas where performance is an important factor, and because these areas

seemed feasible to investigate, given the state of the implementation of the Spice system. In each case, we

instrumented the prototype to measure the operation cost in terms of actual processing time, and also in more

abstract terms to achieve some degree of technology independence in the results.

2.2.4. Maintenance Programs

Update [Giuse 84], a system built to support the distributed archival and retrieval of system files, has been

used as the chief distribution and archival mechanism since 1983 and it is currently used to handle all the data

storage needs of the Spice environment. Our primary goal in designing the Update system was to provide a

simple and uniform way for workstation users to retrieve all or parts of a software system. Update was also

meant to provide an automatic change-log facility that would allow maintainers to record information about

system changes at the time the system was being released. Another important goal was to minimize network
traffic involved in a tranfer, given the number of workstations and the potential for simultaneous requests for
any given set of archived files. As a result, the design of Update incorporated the ability to retrieve selectively

only files that are different in a new release. Files that haven't changed should never be transferred across the

network. Another design goal was to minimize file system usage on the remote machines. To achieve this

goal. Update stores only files that have changed. Files that are common to two or more versions are not
copied; a link is made instead, using the UNIX file-link mechanism. This approach results in considerable

space savings.

2.3. The Distributed File System

Under the Archival Memory project, CMU researchers developed a centralized fie system (CFS) to
provide secure, reliable storage and archiving facilities for files from all departmental computers. We

developed a similar storage system for Spice along with a methodology for evaluating storage systems.

Originally we had planned to integrate video disks into our file system archive servers. However, commercial

manufacturers have yet to release inexpensive, high-quality, write-once video disks. T"hus we merged the

Archival Memory project with our Distributed Processing work.

2.3.1. Prototype storage systems

Our design for the Spice File System incorporated a subset of the earlier Central File System (CFS) design

and was intended for initial installation on the Perq computers. The full specification was to appear later on

unspecified Central Server Machines. We devoted several months in early 1982 to building an interface fbr

the Perq file system. The interface implemented a subset of calls specified by the Spice/CFS File System

design. Tis effort was euentiafly meant to provide a compatibility package for the existing file system, thus

24
... .... ...... I



RFSEARCII IN DIS'RIBUrED PROCESSING

allowing incremental conversion. Towards the end of that period it became clear that the design, worked out

two years earlier, did not easily meet all the requirements of a distributed environment. We then undertook a

redesign effort, producing the current design for Sesame, as the file system is now known [Thompson 85].

Significant changes included moving all protection issues into the name space, and allowing only invariant

files. We also now expect that Central Server Machines will be standard Spice Machines, with larger disks,

and eventually archival media, but running essentially the same software as a personal Spice Machine. This

uniformity should provide many advantages over a scheme drawing a hard distinction between user and

server machines.

In addition to being a file storage service, Sesame provides most of the interrelated services needed to allow

protected sharing of data and services in a network of personal and central computers. It deals with user

verification issues both locally and between machines, name lookup services for various typed objects, archiv-

ing of files to more stable media as well as the fundamental functions of reading and writing files. Sesame is

currently running as an alternate file system in the Spice environment. Each service is independently imple-

mentable on other hosts (e.g. UNIX VAxes) on the local net. Researchers are now testing and debugging the

system.

2.3.2. Methodology for evaluating storage systems

We developed a methodology for modeling storage devices and subsystems. Our strategy separates device-

dependent from hierarchy-dependent characteristics, thereby permitting us to use off-the-shelf software in

simulations of memory hierarchy performance. To demonstrate the methodology's effectiveness, we used it

to build a simulation tool that runs under UNIX and applied it to the CMU network file

system [Satyanarayanan 81, Satyanarayanan 83]. For design purposes, this modeling tool takes partial

specifications of an architecture and produces ranges of complete specifications including: environmental

parameters (e.g. load, reference patterns, capacity requirements), software parameters (e.g. migration

strategies), dnd hardware parameters (e.g. cost, access time, bandwidth, capacity, media lifetime). For analysis

purposes, the tool takes complete specifications, and helps diagnose problems (e.g. improperly set migration

strategies).
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abstraction, excetion handling and concurrency are of fundamental importance to
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the design and maintenance of software systems, we will cxlpain in detail how
Ada's facilities support such concepts. We do this by discussing a series of non-
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proach to making compilers efficient than is commonly taken; more common
approaches include devising more efficient optimization algorithms, being clever
about when to do optimizations, and building the compilers semi-automatically.
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exchange during an interactive session including input parameters, output from
the application, and commands to the application. Forms of this kind show the
user what his options are and provide a simple yet powerful interface through
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This document describes the first public version of the Ada + compiler, which runs on
the VAX and on the Perq (under Accent), producing code for the Perq. We are
releasing the compiler at this time so that it can be used by students taking the IC
course on Ada and any other willing guinea pigs.

The compiler implements full Ada, except for tasking and fixed-point types. Most of
the basic features work. Currently it compiles programs at about half the speed of
the Perq Pascal compiler, produces intermediate files that are about ten times the
size of the source files, and produces code that is about as good as the code
produced by Perq Pascal.
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Accent: A Distributed Operating System for a Network of Scientific Personal Computers.
In Proceedings of the Convention Informatique 84, September, 1984.

Accent is a message based distributed operating system kernel developed at Carnegie-
Mellon University to support a large network of personal scientific workstations.
Accent combines a network transparent interprocess communication facility with
sophisticated virtual memory management to allow copy-on-write transfer of data
between processes on the same processor and copy-on-reference data transfer be-
tween processes on different computers on a local area network. Accent differs
from other network operating system efforts such as Locus Computer
Corporation's LOCUS and Apollo Corporation Aegis in that all system and user
provided services (even kernel functions) can be distributed transparently on the
network. Despite its generality, the performance of Accent is comparable to a
more traditionally constructed operating system on the same processor.

Accent is currently being used on a network of 150 PERQ Systems Corporation PERQ
and PERQ2 computers interconnected via 10 MHz and 3MHz Ethernet. The
Accent interprocess communication facility is available on the Computer Science
Department's 40 VAX computers as a modification to Berkeley UNIX (4.lbsd and
4.2 bsd). Network operating system services on both VAX and PERQ computers
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include network interprocess communication, remote process invocation, trans-
parent file access, printing services, network graphics and network name services.

Accent is being marketed for PERQ and PFRQ2 computers in the United States by
PERQ Systems Corporation under license from Carnegie-Mellon University.
Work is underway to port Accent to other workstations as well as a large mul-
tiprocessor.

[Sansom 84a] Sansom, R.
SPICE System Programmers Guide.
Spice Document, Carnegie Mellon University Computer Science Department,
August, 1984.

This document provides an overview of how to write programs which use the ACCENT
operating system. Thus it explains how to use the server processes running under
Spice, how to create your own processes and how to talk between your own
processes. It does not attempt to explain how to make modifications to the operat-
ing system except for giving the procedure for constructing a new system image.

[Sansom 84b] Sansom, R.
AccUnix - Accent style IPC under UNIX.
Spice Document, Carnegie Mellon University Computer Science Department,
August, 1984.

An explanation of how to use the facilities available under UNIX for doing Accent style
IPC. In addition, a description of how to use the UNIX server for communication
with other machines.
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Satyanarayanan, M.
A Study of File Sizes and Lifetimes.
Technical Report CMU-CS-81-114, Carnegie Mellon University Computer Science Depart-

ment,
April, 1981.

An investigation of the size and lifetime properties of files on the primary computing
facility in the Department of Computer Science at Carnegie-Mellon University is
presented in this paper. Three key issues are examined: the effect of migration on
file characteristics, the effect of file type on file characteristics, and the correlation
between file sizes and lifetimes. Analytical models that fit the observed data are
derived using two alternative techniques.
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Satyanarayanan, M.
A Methodology for Modeling Storage Systems and Its Application to a Network File System.
Technical Report CMU-CS-83-109, Carnegie Mellon University Computer Science Depart-

ment,
March, 1983.

The central question addressed by this dissertation is: Can one structure the modeling
of complex memory systems in such a way as to permit the use of standard,
off-the-shelf software for modeling the behavior of individual memory devices?

The highlights of the research reported in the dissertation are:

* The development of a methodology that permits simulation models for
memory systems to be built from performance models of the com-
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ponents and the description of a tool based on this methodology.

" A demonstration of the side scope of applicability of this methodology
by examples drawn from the primary, secondary and tertiary levels of
the memory hierarchy.

" An implementation of the tool, and measurements to estimate the
overheads imposed by it.

" The use of the tool in the analysis of an actual memory system.

" The dissertation thus provides, in a constructive manner, an affirmative
answer to the question posed at the beginning of this document.

[Schwans 841 Schwans, Karsten.
Tailoring Sofiware for Multiprocessor Systems.
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Multiple processor systems are becoming increasingly common. However, their use
remains difficult due to a lack of knowledge concerning the development of paral-
lel application programs. In addition, contrary to popular predictions of 'cheap
and plenty' resources, efficient management of distributed processor and memory
resources remains of critical importance to the successful use of these systems.

The contributions of this thesis are twofold. First, we design and implement a pro-
gramming environment for multiple processor applications, called the TASK Sys-
tem. Second, we discuss the integration of policies and mechanisms for resource
management into the TASK system.

In TASK, application programs are written in terms of abstractions offered by the
operating system used for program execution. As a result, once an application
program is written, its execution requires few additional eforts by the application's
programmer. Programs are written in two languages. The TASK language,
designed and implemented as part of this thesis, is used to describe the logical
structure of an applications program, and an existing, algorithmic language is
employed to implement the applications algorithms. The construction of an ex-
ecutable version of an application of the TASK and algorithmic language is
automated. Such construction includes automatic linking and loading as well as
the allocation of resources to the individual components of the application
program.

Programmers guide the allocation of hardware resources to program components by
stating high-level directives in TASK programs. To identify suitable directives and
to develop procedures that automatically perform resource allocation based on
these directives, we develop a model of multiple processor software and hardware,
called the proximity model. The model, the directives, and the resouce allocation
procesdures are tested by experimentation with application programs on the Cm*
multiprocessor.

[Sha 83) Sha, D., E.D. Jensen, R.F. Rashid, and J.D. Northcutt.
Distributed Cooperating Processes and Transactions,
Synchronization, ControL and Communication in Distributed Computing Systems., 1983.

[Snow 811 Snow, E.A. and D.P. Siewiorek.
Implementation and Performance Evaluation of Computer Families.
IEEE Transactions on Compu tersC- 30(6), 1981.
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[Spector 82a] Spector, A.Z.
Performing Remote Operations Efficiently on a Local Computer Network.
Communications of the ACM 25(4), April. 1982.

A communication model is described that can serve as a basis for a highly efficient
communication subsystem for local networks. The model contains a taxonomy of
communication instructions that can be implemented efficiently and can be a good
basis for interprocessor communication. These communication instructions, called
remote references, cause an operation to be performed by a remote process and,
optionally, cause a value to be returned. This paper also presents implementation
considerations for a communication system based upon the model and describes
an experimental communication subsystem that provides one class of remote
references. These remote references take about 150 microseconds or 50 average
instruction times to perform on Xerox Alto computers connected by a 2.94
megabit Ethernet.

[Spector 82b] Spector A.Z. and P. Schwarz.
Synchronizing Shared Abstract Types.
Technical Report CMU-CS-82-128, Carnegie Mellon University Computer Science Depart-

ment,
July, 1982.

This paper discusses the synchronization issues that arise when transaction facilities are
extended for use with shared abstract data types. A formalism for specifying the
concurrency properties of such types is developed. This formalism uses depen-
dency relations that are defined in terms of an abstract type's operations. It re-
quires that the definition of an abstract type state whether or not cycles involving
these relations should be allowed to form. Directories and two types of queues are
specified using the technique, and the degree to which concurrency is restricted by
type-specific consistency properties is exemplified. A locking mechanism is
described that permits implementations to make use of this type-specific infor-
mation to approach the limits of concurrency.

[Spector 831 Spector, A.Z. and P. Schwarz.
Transactions: A Construct for Reliable Distributed Computing.
Operating Systems Reviewl7(4), April, 1983.

Transactions have proven to be a useful tool for constructing reliable database systems
and are likely to be useful in many types of distributed systems. To exploit trans-
actions in a general purpose distributed system, each node can execute a trans-
action kernel that provides services necessary to support transactions at higher
system levels. The transaction model that the kernel supports must permit ar-
bitrary operations on the wide collection of data types used by programmers. New
techniques must be developed for specifying the synchronization and recovery
properties of abstract types that are used in transactions. Existing mechanisms for
synchronization, recovery, deadlock management, and communication are often
inadequate to implement these types efficiently, and they must be adapted or
replaced.

[Steele 84] Steele, G.
Common Lisp: The Language.
Digital Press, 1984.
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[Thompson 85] Mary R. Thompson, Robert D. Sansom, Michael B. Jones Richard F. Rashid.
Sesame: The Spice File System.
Technical Report CMU-CS-85-172, Carnegie Mellon University Computer Science Depart-

ment,
November, 1985.

Sesame provides several distinct but interelated services needed to allow protected
sharing of data and services in an environment of personal and central coputers
connected by a network. It provides a smooth memory hierarchy between the
local secondary storage and central file system. It provides a global name space
and a global user authentication protocol.

[Uehara 83] Uehara, T. and M.R. Barbacci (eds.).
Proceedings of the Sixth International Symposium on Computer Hardware Description Lan-

guages and their Applications.
North Holland Publishing Company. 1983.

[Whiteside 82) Whiteside, R.A., P.G. Hibbard, and N.S. Ostlund.
A Systolic Algorithm for Monte Carlo Simulations.
In Proceedings of the Third International Coqference on Distributed Computer Systems, 1982.

[Wright 841 Wright. K.
Oil: The Spice ASCIi Editor
1984.
Internal Working Document of the Carnegie Mellon Computer Science Department.
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3. Research in Image Understanding

Image Understanding (IU) research aims at understanding and constructing Al systems that can perceive

their external world through visual images. IU systems typically operate in conjunction with other, larger

systems that use perceptual input. Thus, we evaluate IU systems ultimately by how much they contribute

toward visual capabilities the larger systems need to accomplish particular tasks.

The primary objective of CMU's IU research effort over the past few years has been to develop techniques

and systems that will lead to a successful demonstration of image understanding concepts over a wide variety

of tasks. Our work spans three interrelated areas:

* Understanding three-dimensional shapes: developing theories and techniques that distinguish
three-dimensional shapes from two-dimensional images and permit a system to comprehend the
structure of the visual environment.

* Modeling a three-dimensional world: applying specialized algorithms and control structures to
model three-dimensional urban scenes from aerial photographs and range images.

* Applications of three-dimensional methods: inventing custom architectures and programming
structures that can realize vision techniques and structures efficiently.

In addition to our work in these areas, we have contributed several expert system and programming packages

to the SRI Testbed facilities.

3.1. Understanding Th ree-Dimensional Images

One fundamental challenge in vision research is getting machines to discern three-dimensional shapes

represented as two-dimensional images. At CMU we have made progress in solving several aspects of this

problem. Our contributions include defining fundamental gradient space properties, applying shadow-

derived information, exploring generalized cylinder applications, and developing a new analysis technique for

streo image pairs.

3.1.1. Gradient space theory

Kanade and Shafer [Shafer 82a] have developed and summarized important properties of Mackworth's

gradient space. Their introduction and use of vector (edge) gradients as well as surface gradients provide

concise notation for several results. They explored properties including orthographic and perspective projec-

tions; gradient definitions; gradient space implications of vectors belonging to one or more surfaces and of

several vectors contained on a single surface; and relationships among vanishing points, vanishing lines, and

the gradient space. The vision research community has used their work as a study guide and reference.
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3.1.2. Shadow geometry theory

The shadow geometry theory applies a gradient space approach to threc-dimensional shape inference. It

exploits image shadows that in previous methods, had inhibited finding surface orientations. Shafer IShafer

92b] has applied the theory to find surface orientations in polyhedra and generalized cylinders.

The shadow geometry theory poses a "basic shadow problem" where a single light source illuminates a

surface and casts its shadow on a second, background surface. Six parameters specify the problem: the
surface orientations (two parameters each) and the source vector direction. Given a line drawing that iden-

tifies shadow regions, the shadow geometry strategy uses shadow shape to generate constraints on possible
surface orientations. The strategy identifies "illumination surfaces" bounded by illumination vectors,.sin
Huffinan-Clowes line labels to surface edges, and applies the corresponding constraints in gradient space.

Given any three parameters, the method can determine the remaining unknowns.

Our work has also extended the basic problem to polyhedral and generalized cylinder analyses and yielded
benefits in both cases over previously used shape inference techniques. Shadow geometry mitigates one of

the classic problem in inferring shape from real images: low edge contrast within shadows. When analyzing

a polyhedron image via shadow geometry, detecting all shadow edges becomes unnecessary. For a general-

ized cylinder's curved surface, shadow geometry reveals surface orientation along a strip that cuts across the

surface image and provides information that complements curved-surface interpolation techniques.

3.1.3. Generalized cylinders

Binford's generalized cylinders form a commonly-used shape representation scheme in computer vision,
but research using the cylinders has been entirely based on heuristics, due to a lack of mathematical under-
standing and precise definition. We have investigated the properties of generalized cylinders and presented a

comprehensive framework including several subclasses. Our new definition, based on a mathematical model,

is more general than past definitions.

One difficulty with using generalized cylinders lies in calculating three-dimensional descriptions from

images of their occluding contours (outlines). Shafer and Kanade [Shafer 83a] studied this problem and

obtained their strongest results for solids of revolution, a generalized cylinder subclass. They produced a
closed-form method for analyzing solids-of-revolution image contours and demonstrated that a picture of the

contours is ambiguous (see Figures 3-1 and 3-2), with one degree of freedom related to the angle between the

line of sight and the solid's axis. Further analysis, such as applying the shadow geometry method, can resolve

this ambiguity and provide a unique 3-D interpretation of a solid-of-revolution image.
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(a) solid of revolution, side view

(b) Image of solid seen at 45 degrees

Figure 3-1: Solid-of-revolution contours

3.1.4. Image matching by two-stage dynamic programming

The key process in obtaining depth information via stereopsis is a search that identifies corresponding

points in left and right images. Then, given a camera model specifying the camera positions, triangulation will

yield the depth. Though the general correspondence problem involves searching an entire image, we can

further exploit the camera model and reduce the process to a set of scanline-scanline correspondence sub-

problems. That is, after rectifying an image pair so that the epipolar lines become horizontal scanlines, we can

restrict the search to a single pair of corresponding scanlines.

In edge-based stereo techniques, the search concentrates on points that delineate edges. The intra-scanline

method seeks edge-point pairs. The problem in this situation becomes one of finding a match-path on a

two-dimensional search plane whose axes are the right and left scanlines. Well-known dynamic programming

techniques handle the 2-D search efficiently. Where an edge extends across scanlines, vertically connected

image points provide additional consistency constraints over the 2-D search plane. Our research exploits

mutual correlations between scanlines by adding a second, inter-scanline search to find consistcncies among
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(c) Possible interpretations of image at various viewing angles.

Thick lines are visible portions; thin lines are estimated

Interpretations are scaled to same horizontal size.

69

Figure 3-2: Interpreting a solid-of-revolution image

scanlines. We have produced an efficient stereo image-matching algorithm that simultaneously searches both

within and between image scanlines [Ohta 83).

The algorithm uses edge-delimited intervals as the elements to match. Pursuing both intra- and inter-

scanline searches, we cast the problem as a three-dimensional search for a surface that best matches intra-

scanline edge points while conforming to inter-scanline constraints. Our method reduces computation to a

feasible amount and we have successfully processed urban aerial photographs containing tall buildings, roads,

and trees.

3.2. Modeling a Three-dimensional World

A vision system must be capable of more than classifying and segmenting images or identifying objects in

images to perform navigation, change detection, model-based interpretation, and other tasks. It must be able

to generate a three-dimensional description of the scene, or model a 3-D world. In the last few years we have

developed automatic techniques for building 3-D descriptions of scenes and objects from aerial images and

range dat
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3.2. 1. Modeling from aerial photography

It is difficult to build a complete description of a complex scene from a single view, because one view

provides only partial information about the scene. Many surfaces may be occluded and some visible portions

may be difficult to recover because of shadows, highlights, and oblique viewing angles. The 3-D Mosaic

System, developed and tested by Herman and Kanade [Herman 83a], is a model-based vision system that

incrementally acquires a 3-D description of urban scenes from aerial photographs. Our system uses multiple

images obtained from multiple viewpoints under different conditions and builds a coherent model by com-

bining partial 3-D information from each view. This approach aids interpretation in two ways. First, surfaces

occluded in one image may become visible in another. Second, surface features that are difficult to analyze

and interpret in one image may become more apparent in another because of different viewpoint and/or

lighting conditions. The 3-D description serves as a model during its construction: at each step, the current

description determines which part of a scene, at which angle, should be taken from the next image.

3.2.2. Modeling from 3-D Range Imagery

Extracting 3-D information from 2-D image data poses a formidable challenge, partly because the system

must infer distance from intensity. Recent technological advances, however, permit direct extraction of the

third dimension in the form of range images. In addition to difficulties shared with 2-D image processing,

range data pose their own special problems: extracting useful features, handling noise, etc.

Smith and Kanade [Smith 84] developed a system that produces object-centered 3-D descriptions, begin-

nling with 3-D data obtained by a light-stripe rangefinder. The thrust of this work is data-driven, bottom-up,

autonomous processing that generates object descriptions from complicated scenes without referring to

specific pre-stored object models.

Beginning with iconic range data, our system generates descriptions while moving up a hierarchy of con-

tour, surface, and object to scene. In so doing, it exploits coherent relationships such as symmetry, col-

linearity, and coaxiality among lower-level elements, to hypothesize upper-level elements. This strategy is

justified because those coherent relationships do not usually occur accidentally [Kanade 81].

We focused our efforts on the use of occluding contours (outlines), which we can extract reliably from the

light-stripe range data. First, the program extracts, segments, and classifies contours. From the coherencies

among them, such as parallelism, surfaces are hypothesized and represented as conic surfaces (pipes, cones,

and planes). The program then confirms or refutes surface hypotheses by their ability to account for observed

surface area. It examines coherencies among the verified surfaces, such as axis intersections, to form

hypotheses of surface groups. Finally, the program compares surface groupings from multiple scenes; if a
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similar structure repeatedly occurs, it identifies the structure as an object. The program has been tested on

several scenes that include pans, cups, shovels, and polyhedra.

Tomita and Kanade developed a 3-D shape matching program that matches object models with the scene

descriptions obtained from the range image by finding appropriate coordinate transformations. It

hypothesizes a transformation by initially matching a few scene features with model features, then tests the

transformation with the remaining features for verification. The object models can be generated interactively

from the example scenes. In our program, object models can represent not only objects with rigid, fixed

shapes, but also objects with inter-part articulations such as rotational joints or linear-slide joints. This

representation also allows the program to process objects with three-dimensional symmetry (e.g., a cup with a

handle) unambiguously.

The IUS Group has been developing other facilities that acquire, process, and display 3-D range images to

aid research on 3-D range data analysis. The facilities include a data acquisition system for an industrial

setting and a library of programs for various tasks. The library includes software for boundary detection, 3-D

curve segmentation, 3-D edge detection, and a 3-D display program with rapid data/description overlay

graphics.

3.3. Applications in Digital Mapping and Photointerpretation

The development of intelligent spatial databases addresses two problems in digital mapping. First, from a

database perspective, the explosive increase in the availability of imagery and image-related information

makes finding a small piece of relevant data increasingly difficult. Storing tens of thousands of images on-line

is useless unless a user can quickly locate one interesting feature or landmark in many different images

simultaneously. Second, symbolic indexing and addressing of images for automated analysis requires many of

the same techniques as interactive analysis, except that in the latter, a human provides the guidance. Facilities

such as on-line image/map databases, signal and symbolic indexing of natural and man-made features, and

spatial reasoning can be viewed in the short term as semi-automated tools that increase human

photointerpreters' productivity. In the long term, the facilities provide a knowledge base for automated

systems that can perform detailed analysis, including change detection and automatic map description updat-

ing.

3.3.1. An integrated spatial database

The IUS Group has developed the Map Assisted Photointerpretazion System (MAPS), a large scale

image/map database system [McKeown 83). The first such system to work with a complex urban environ-

ment, MAPS contains approximately 100 high resolution aerial mapping images, a digital terrain (elevation)
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database, and map databases provided by the USGS and DMA. The system integrates these databases using

large-scale, high-resolution imagery to cover approximately a 150 square mile area centered over the District

of Columbia. Users can interact with a high resolution image display and qucry the database for names,

descriptions, and spatial relationships among natural and man-made map entities. Our research concerns
evaluating a hierarchical spatial representation to constrain the search in large databases, applying spatial

knowledge to navigate within a map database, and supporting complex queries that arise in cartography.

Dynamic symbolic and signal access to the image/map database, detailed semantic descriptions of man-

made and natural features, generalized geometric computations of map feature relationships, and an intel-

ligent window-based image display manager distinguish MAPS from other work in this area.

Spatial databases require many query capabilities and access mechanisms not found in more traditional

database applications. The following is a brief list of some of the current capabilities in MAPS:

" Geodetic Location Query of map entities extracted from imagery in map coordinates rather than
image coordinates.

" Time Selective ordering of imagery and map data based on acquisition date and time.

" Map Feature Descriptions Query of map entities based on full or partial descriptions of attributes
such as shape, area, population, and user-defined classifications.

" Access Methods Multiple access methods are provided.

Template Matching-Match on factual templates.

Signal Access--Match on location.

Symbolic Access-Match by name.

Geometric Access-Match by spatial constraints.

Memo Functions--Look up facts before computing from database.

" Spatial Decomposition Limitation of query area using inherent spatial decompositions, such as

political boundaries and neighborhoods.

3.4. Vision for Navigation

A mobile robot needs to know its motion and position relative to fixed objects, and must be able to track

moving objects. We have explored three vision methods that use multiple images to track both the robot's

motion and that of nearby objects. One method uses sequences of stereo image pairs, another exploits

monocular image sequences, and a third uses an adaptation of optical flow techniques. P"S
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3.4.1. A visual navigation system for the CMU rover

The FIDO [Thorpe 84] visual navigation system guides a robot built by the CMU Mobile Robot Lab to a

pre-defined location in a static environment. Our work extended and improved upon Moravec's work with
stereo image pair sequences. We first re-implemented the Stanford Cart algorithms and then successively

examined several of the most important components:

" A prototype multiprocessor implementation running on multiple VAXCS showed that FiDO could be
efficiently decomposed into several cooperating processes. With a high bandwidth communica-
tions channel or shared main memory, the multiprocessor version could run in as little as three
seconds per step.

" Our examination of interest operators, the means for picking points to match from one image to
the next, showed that changing low-level image-processing algorithms made much less difference
than adding geometric constraints.

* We built a better geometry module that uses more of the available geometric constraint on the
image matching process. This allowed us to drop from nine images at each step to two, decreasing
run time to 30 CPU seconds per step while maintaining accuracy.

" We developed a new path planning algorithm. Path Relaxation, that explicitly takes into con-
sideration the robot's field of view and the potentially conflicting goals of finding a shorter path
and staying further away from objects.

Various versions of Fido were tested and demonstrated throughout 1983.

3.4.2. Obtaining camera motions from image sequences

Lucas and Kanade [Lucas 811 applied their "method of differences" technique to the problem of obtaining

camera motion from an image sequence. The technique uses inter-image intensity differences and local

intensity gradients to iteratively estimate camera motion. First iterations use images that have been smoothed

with a low-pass filter, to get rough estimates for the parameters; later iterations use successively less-smoothed

images to achieve increasingly higher resolution.

By applying simple image smoothing and pixel differences, instead of correlations, and using multiple

resolution levels, our method avoids the expensive searches used by many other matching techniques. If
there are fewer unknown parameters (as in motion confined to a plane or for a pair of stereo cameras), our

technique will tolerate more error in initial parameter estimates and still converge to the correct solution.

Lucas's thesis [Lucas 84] includes an analysis of various real and synthetic image examples.

3.4.3. Obtaining object motion from image sequences

We have adapted Horn's and Schunck's optical flow algorithm to the problem of determining arbitrary

motions of an object from two-dimensional image sequences. The adapted algorithm allows for both gradual

changes in an object's appearance in the image sequence and flow discontinuities at the object's boundaries.
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Our algorithm [Cornelius 831 uses a procedure that creates velocity fields for estimating an object's velocity

and brightness changes (i.e., x-ray thickness changes) in an image plane. The procedure computes velocities

from a series of images, using information about the spatial and temporal brightness gradients. We have

applied the method to x-ray images of an expanding ellipsoid and of a beating heart, and it can also be used

with reflectance images.

3.5. Contributions to the SRI Testbed Facilities

DARPA and DMA have jointly established an integrated demonstration system "testbed," with SRI as the

integrating contractor. The testbed will be used for demonstrating and evaluating the applicability of IU

research to cartography. The testbed has a user interface that simulates a cartographic workstation environ-

ment, and includes a computer with display terminal, an image display with track ball, and a digitizing tablet.

The system will support all major steps in mapmaking with continuously evolving automation. DMA will do

most image digitization off-line. The following contributions to the IUS testbed by CMU have been docu-

mented in the DARPA/DMA Image Understanding Testbed User's Manual [Hanson 84]:

* Delivered the Phoenix region-segmentation program [Law 82] that has a flexible user interface
and interactive graphics.

* Delivered all of our basic VAX software facilities for running image understanding programs,
including modified versions of the CMU image access and Grinnell graphics packages. This code
became the core of SRI's testbed facilities.

9 Implemented an improved version of the Moravec stereo reconstruction algorithm for the testbed.
This C version incorporates several improvements that increase speed and flexibility.
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The method allows for gradual changes in the way an object appears in the image
sequence, and allows for flow discontinuities at object boundaries. We find
velocity fields that give estimates of the velocities of objects in the image plane.
These velocities are computed from a series of images using information about the
spatial and temporal brightness gradients. A constraint on the smoothness of
motion within an object's boundaries is used. The method can be applied to
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A scene understanding system derives and represents information about a given scene
for the purpose of various given tasks. The 3D Mosaic system incrementally
derives a three-dimensional description of a complex urban scene from multiple
images. The description, which we call a scene model, is intended to be useful for
tasks such as matching, display generation, planning paths through the scene, and
making other decisions dealing with the scene environment. This paper briefly
describes the system and some experiments in acquiring and using the scene
model. Further details may be found in [6,7].
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'We describe the current state of the 3D MOSAIC project, whose goal is to incremen-
tally acquire a three-dimensional model of a complex urban scene from images.
The notion of incremental acquisition arises from the observations that 1) single
images contain only partial information about a scene, 2) complex images are
difficult to fully interpret, and 3) different features of a given scene tend to be
easier to extract in different images because of differences in viewpoint and light-
ing conditions. In our approach, multiple images of the scene are sequentially
analyzed so as to incrementally construct the model. Each new image provides
information which refines the model. We describe some experiments toward this
end. Our method of extracting 3D shape information from the images is stereo
analysis. Because we are dealing with urban scenes, a junction-based matching
technique proves very useful. This technique produces rather sparse wire-frame
descriptions of the scene. A reasoning system that relies on task-specific
knowledge generates an approximate model of the scene from the stereo output.
Gray scale information is also acquired for the faces in the model. Finally, we
describe an experiment in combining two views of the scene to obtain a refined
model.
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The 3D Mosaic system is a vision system that incrementally reconstructs complex 3D
scenes from multiple images. The system encompasses several levels of the vision
process. starting with images and ending with symbolic scene descriptions. This
paper describes the various components of the system, including stereo analysis,
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monocular analysis, and constructing and modifying the scene model. In addition,
the representation of the scene model is described. This model is intended for tasks
such as matching, display generation, planning paths through the scene, and
making other decisions about the scene environment. Examples showing how the
system is used to interpret complex aerial photographs of urban scenes are
presented.

Each view of the scene, which may be either a single image or a stereo pair. undergoes
analysis which results in a 3D wire-frame description that represents portions of
edges and vertices of objects. The model is a surface-based description constructed
from the wire frames. With each successive view, the model is incrementally up-
dated and gradually becomes more accurate and complete. Task-specific
knowledge, involving block-shaped objects in an urban scene, is used to extract the
wire frames and construct and update the model.

[Kanade 81] Kanade, T.
Recovery of the Three-dimensional Shape of an Object from a Single View.
Artificial Jntelligencel7(1-3):409-460, August, 1981.

Given a single picture which is a projection of a three-dimensional scene onto the
two-dimensional picture plane, we usually have definite ideas about the three-
dimensional shapes of objects. To do this we need to use assumptions about the
world and the image formation process, since there exist a large nfumber of shapes
which can produce the same picture.

The purpose of this paper is to identify some of these assumptions--mostly geometrical
ones--by demonstrating how the theory and techniques which exploit such as-
sumptions can provide a systematic shape-recovery method. The method consists
of two parts. The first is the application of the Origami theory which models the
world as a collection of plane surfaces and recovers the possible shapes qualita-
tively. The second is the technique of mapping image regularities into shape
constraints for recovering the probable shapes quantitatively.

Actual shape recovery from a single view is demonstrated for the scenes of an object
such as a box and a chair. Given a single image, the method recovers the three-
dimensional shapes of an object in it, and generates images of the same object as
we would see it from other directions.

[Law 821 Law, K., S. Shafer, T. Kanade and D. Williams.
The Phoenix Image Segmentation System: Description and Evaluation.
SRI Intemational(289), December, 1982.
Version 1.1, contract no. MDA903-79-C-0588, SRI Project # 1009.

Phoenix is a computer program for segmenting images into homogeneous closed
regions. It uses histogram analysis, thresholding, and connected-components
analysis to produce a partial segmentation, then resegments each region until
various stopping criteria are satisfied. Its major contributions over other recursive
segmenters are a sophisticated control interface, optional use of more than one
histogram-dependent intensity threshold during tentative segmentation of each
region, and spatial analysis of resulting subregions as a form of look-ahead' for
choosing between promising spectral features at each step.

Phoenix was contributed to the DARPA Image Understanding Testbed at SRI by
Carnegie-Mellon University. This report summarizes applications for which
Phoenix is suited, the history and nature of the algorithm, details of the Testbed
implementation, the manner in which Phoenix is invoked and controlled, the type
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of results that can be expected, and suggestions for further development. Baseline
parameter sets are given for producing reasonable segmentations of typical in-
agery.

[Lucas 81) Lucas, B.D., and T. Kanade.
An Iterative Image Registration Technique With an Application to Stereo Vision.
In Lee S. Baumann, Editor, Proceedings of the 12th DARPA Image Understanding Workshop,

Pages 121-127. DARPA, April, 1981.
Also found in IJCAI '81 Proceedings, pp.674-679.

Image registration finds a variety of applications in computer vision. Unfortunately,
traditional image registration techniques tend to be costly. We present a new
image registration technique that makes use of the spatial intensity gradient of the
images to find a good match using a type of Newton-Raphson iteration. Our
technique is faster because it examines far fewer potential matches between the
images than existing techniques. Furthermore, this registration technique can be
generalized.

[Lucas 84] Bruce D. Lucas.
Generalized Image Matching by the Method of Differences.
PhD thesis, Carnegie Mellon University, Computer Science Department, July, 1984.

[McKeown 811 McKeown, D.M., Jr., and T. Kanade.
Database Support for Automated Photo Interpretation.
In Lee S. Baumann, Editor, Proceedings of the DARPA Image Understanding Workshop,

Pages 7-13. DARPA, April, 1981.
This paper is concerned with the use of a database to support automated photo inter-

pretation. The function of the database is to provide an environment in which to
perform photo interpretation utilizing software tools, and represent domain
knowledge about the scenes being interpreted. Within the framework of the
database, image interpretation systems use knowledge stored as map, terrain, or
scene descriptions to provide structural or spatial constraints to guide human and
machine processing. We describe one such system under development, MAPS
(Map Assisted Photo interpretation System), and give some general rationales for
its design and implementation.

[McKeown 82a] McKeown, D.M., Jr.
Concept Maps.
In Lee S. Baumann, Editor, 13th Proceedings of the DARPA Image Understanding Workshop,

Pages 145-153. Science Applications, Inc., MacLean, VA, September, 1982.
Also appears in the CMU-CSD technical report CMU-CS-83-117.

This paper describes a representational mechanism for constructing three-dimensional
large scale spatial organizations for applications in areas such as cartography and
land use studies, photo interpretation for reconnaisance and surveillance, and
geological modeling for resource analysis. It focuses on the representation and
utilization of map information as a knowledge source for photo-interpretation, in
particular, the description of a highly detailed, large scale geographic area:
Washington D.C. Methods of data acquisition, query specification and geometric
operations on map data are discussed. These ideas have been implemented into a
working map database system, CONCEPTMAP, as a component of MAPS: (Map
Assisted Photo-interpretation System), our ongoing research in interactive photo-
interpretation work stations.

3H
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[McKeown 82b McKeown, D.M. and JL. Denlinger.
Graphical Tools for Interactive Image Interpretation.
Computer Graphicsl6(3):189-198. July, 1982.

This paper describes BROWSE, an interactive raster image display facility which is a
major component of a larger integrated Map Asssted Photointerpretation System
(MAPS), being developed as a prototype interactive aid for photointerpretation.
Application areas for this research include image cartography, land use studies and
reconnaissance, as well as image database organization, storage, and retrieval.

BROWSE is a window-oriented display manager which supports raster image display,
overlay of graphical data such as map descriptions and image processing segmen-
tations, and the specification and generation of 3D shaded surface models.
Digitized imagery from black and white and color aerial mapping photographs is
displayed by BROWSE at multiple levels of resolution and allows for dynamic
positioning, zooming, expansion or shrinking of the image window. Map data
represented as vectors and polygons can be superimposed on the imagery through
image-to-map registration. Access to collateral map databases and terrain models
may be accomplished using the BROWSE graphical interface. Finally, the window
representation gives a convenient communication mechanism for passing image
fragments to image interpretation programs, which generally run as separate
processes. The results of such processing can be returned to BROWSE for further
processing by the user.

We will discuss the rationale behind the design of BROWSE as well as its application to
domains including aerial photointerpretation and 3D cartography.

[McKeown 83) McKeown, D.M., Jr.
Maps: The Organization of a Spatial Database System Using Imagery, Terrain, and Map

Data,
In Lee S. Baumann, Editor, 14th Proceedings of the DARPA Image Understanding Workshop,

Science Applications, Inc., MacLean, VA., June, 1983.
Reprint no. AD-POO1 199. Also available as CMU-CSD technical report CMU-CS-83-136.

This paper presents the system description and organization of MAPS, the Map As-
sisted Photo interpretation System. MAPS is a large integrated database system
containing high resolution aerial photographs, digitized maps and other car-
tographic products, combined with detailed 3D descriptions of man-made and
natural features in the Washington, D.C. area. Applications of the Maps system in
the areas of map-guided image segmentd'ion, rule-based systems for image inter-
pretation, and 3D scene generation are discussed. A classification of image
database systems into three models is also presented. These models are the Image
Database (ID) Model, the Map Picture Database (MPD) Model and the
Image/Map Database (IMD) Model.

[McKeown 84a] McKeown, D.M., Jr.
Digital Cartography and Photo Interpretation from a Database Viewpoint,
In Gargarin, G. and E. Golembe, New Applications of Data Bases, Pages 19-42. Academic

Press, 1984.
This paper gives an overview of database issues in digital cartography and aerial

photointerpretation. A classification of database systems based on the method of
data acquisition and underlying spatial representation is described. We also
present a brief overview of MAPS, the Map Assisted Photointerpretation System.
MAPS is a large integrated database system containing high resolution aerial
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photographs, digitized maps and other cartographic products, combined with
detailed 3D descriptions of man-made and natural features in the Washington
D.C. area.

[McKeown 84b] McKeown, D.M., Jr.
Knowledge-Based Aerial Photo Interpretation.
Photogrammeria, Journal of the International Society for Photogrammetry and Remote

Sensing39:91-123, March, 1984.
Special issue on pattern recognition.

This paper presents an overview of work in two areas that are crucial towards the
development of automated tools for aerial photointerpretation: large-scale spatial
databases, and rule-based systems for photointerpretation. First, we present a
description of models for spatial database systems and outline requirements fo
rdatabase support for knowledge-based photointerpretation. Next we present a
brief description of the organization of MAPS, the Map-Assisted Photointerpreta-
tion System. MAPS is a large integrated database system containing high-resolution
aerial photographs, terrain, digitized maps and other cartographic products, com-
bined with detailed 3D descriptions of man-made and natural features in the
Washington D.C. area. Finally, we discuss recent work in the area of rule-based
systems for photointerpretation. The system, SPAM, consists of three major com-
ponents, an image/map database, a collection of image processing tools, and a
rule-based system whose domain of expertise is commercial airports.

[McKeown 84c] McKeown, D.M., and J.L Denlinger.
Map-Guided Feature Extraction From Aerial Imagery.
In Proceedings of the Second IEEE Computer Society Workshop on Computer Vision.

Representation and Control, IEEE, May, 1984.
In this paper we discuss the use of map descriptions to guide the extraction of man-

made and natural features from aerial imagery. An approach to image analysis
using a region-based segmentation system is described. This segmentation system
has been used to search a database of images that are in correspondence with a
geodetic map to find occurrences of known buildings, roads, and natural features.
The map predicts the area of uncertainty caused by errors in the image to map
correspondence. The segmentation process then searches for image regions that
satisfy 2-dimensional shape and intensity criteria. If no initial region is found, the
process attempts to merge together those regions that may satisfy these criteria.
Several detailed examples of the segmentation process are given.

[McKeown 84d] McKeown, D.M., Jr.
Spatial Database Research at CMU.
IEEE 1984 Proceedings of Trends and Applications(CH2053-7/84/000/0319):319-323, July,

1984.
This paper gives a brief overview of current research at Carnegie-Mellon University in

the area of spatial database systems for digital cartography and aerial photoin-
terpretation. A brief overview of MAPS, the Map-Assisted Photointerpretation
System, is presented. MAPS is a large integrated database system containing high
resolution aerial photographs, digitized maps, and other cartofraphic products,
combined with detailed 3D descriptions of man-made and natural features in the
Washington D.C. area.
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[McKeown 84e] McKeown, D.M., and OE. Lukes.
Digital Mapping and Image Understanding.
In Archives of the XVih Congress on Phologrammetry and Remote Sensing. Pages 690-697.

International Society for Photogrammetry and Remote Sensing, June, 1984.
Rio de Janeiro, Brazil.

Emerging requirements associated with digital mapping pose a broad set of challenging
problems in image understanding research. Currently several leading research
centers are pursuing the development of new techniques for automated feature
extraction; for example, road tracking, urban scene generation, and edge-based
stereo compilation. Conccpts for map-guided scene analysis are being defined
which will lead to further work in. automated techniques for spatial database
validation, revision and intensification.

This paper seeks to describe on-going activity in this field and suggest areas for future
research. Research problems range from the organization of large-scale digital
image/map databases for tasks such as screening and assessment, to structuring
spatial knowledge for image analysis tasks, and the development of specialized
"expert" analysis components and their integration into automated systems. Sig-
nificantly, prototype image analysis workstations have been configured for both
film-based and digital image exploitation which interface conventional image
analysts and extracted spatial data in computer-assisted systems. However, the
state-of-the-art research capabilities are fragile, and successful concept demonstra-
tions require thoughtful analysis from both the mapping and image understanding
communities.

[Ohta 831 Ohta, Y. and T. Kanade.
Stereo by Intra- and Inter-scanline Search Using Dynamic Programming.
Technical Report CMU-CS-83-162, Carnegie Mellon University, Computer Science Depart-

ment,
October, 1983.

This paper presents a stereo matching algorithm using the dynamic programming tech-
nique. the stereo matching problem, that is, obtaining a correspondence between
right and left images, can be cast as a search problem. When a pair of stereo
images is rectified, pairs of corresponding points can be searched for within the
same scanlines. We call this search intra-scanline search. This intra-scanline
search can be treated as the problem of finding a matching path on a two-
dimensional (2D) search plane whose axes are the right and left scanlines. Ver-
tically connected edges in the images provide consistency constraints across the 2D
search planes. Inter-scanline search in a three-dimensional (3D) search space,
which is a stack of the 2D search planes, is needed to utilize this constraint.

Our stereo matching algorithm uses edge-delimited intervals as elements to be
matched, and employs the above mentioned two searches: one is inter-scanline
search for possible correspondences of connected edges in right and left images
and the other is intra-scanline search for correspondences of edge-delimited inter-
vals on each scanline pair. Dynamic programming is used for both searches which
proceed simultaneously: the former supplies the consistency constraint to the
latter while the latter supplies the matching score to the former. An interval-based
similarity metric is used to compute the score.

The algorithm has been tested with different types of images including urban aerial
images, synthesized images, and block scenes, and its computational requirement
has been discued.

3-16



RESEARCH IN IMAGE UNDERSTANDING

[Shafer 82a] Shafer, S.A., and T. Kanade.
Gradient Space Under Orthography and Perspective.
In Proceedings of the IEEE Workshop on Computer Vision: Representalion and Control,

Pages 22. IEEE Computer Society, P.O. Box 80452, Los Angeles, CA 90080, August,
1982.

Also available as CMU-CSD Technical Report CMU-CS-82-123.
Mackworth's gradient space has proven to be a useful for image understanding.

However, descriptions of its important properties have been somewhat scattered in
the literature.

This paper develops and summarizes the fundamental properties of the gradient space
under orthography and perspective, and for curved surfaces. While largely a
recounting of previously published results, there are a number of new obser-
vations, particularly concerning the gradient space and perspective projection. In
addition, the definition and use of vector gradients as well as surface gradients
provides concise notation for several results.

The properties explored in the paper include the orthographic and perspective projec-
tions themselves; the definition of gradients; the gradient space consequences of
vectors (edges) belonging to one or more surfaces, and of several vectors being
contained on a single surface; and the relationships between vanishing points,
vanishing lines, and the gradient space.

The paper is intended as a study guide for learning about the gradient space, as well as
a reference for researchers working with gradient space.

[Shafer 82b) Shafer, S., and T. Kanade.
Using Shadows in Finding Surface Orientation.
In 13th Proceedings of the DARPA Image Understanding Workshop, Pages 61. Science Ap-

plications, Inc., MacLean, VA. September, 1982.
Also available as CMU-CSD Technical Report CMU-CS-82-100.

Given a line drawing from an image with shadow regions identified, the shapes of the
shadows can be used to generate constraints on the orientations of the surfaces
involved. This paper describes the theory which governs those constraints under
orthography.

A 'Basic Shadow Problem' is first posed, in which there is a single light source, and a
single surface casts a shadow on another (background) surface. There are six
parameters to determine: the orientation (2 parameters) for each surface, and the
direction of the vector (2 parameters) pointing at the light source. If some set of
three of these are given in advance, the remaining three can then be determined
geometrically. The solution method consists of identifying 'illumination surfaces'
consisting of illumination vectors, assigning Huffman-Clowes line labels to their
edges, and applying the corresponding constraints in gradient space.

The analysis is extended to shadows cast by polyhedra and curved surfaces. In both
cases, the constraints provided by shadows can be analyzed in a manner analogous
to the Basic Shadow Problem. When the shadow falls upon a polyhedron or
curved surface, similar techniques apply. The consequences of varying the posi-
tion and number of light sources are also discussed. Finally, some methods are
presented for combining shadow geometry with other gradient space techniques
for three-dimensional shape inference.
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[Shafer 83a] Shafer. S. A.. and T. Kanade.
The Theory of Straight Homogenous Generalized Cylinders and A Taxonomy of General-

ized Cylinders.
In Lee S. Baumann, Editor, 14th Proceedings of the DARPA Image Understanding Workshop,

Science Applications, Inc., MacLean, VA, January, 1983.
Reprint no. AD-POO1 209. Also available as CMU-CSD technical report CMU-CS-83-105.

In recent years, Binford's generalized cylinders have become a commonly used shape
representation scheme in computer vision. However, research involving general-
ized cylinders has been hampered by a lack of analytical results at all levels, even
including a lack of a precise definition of these shapes.

In this paper, a definition is presented for Generalized Cylinders and for several sub-
classes. Straight Generalized Cylinders, with a linear axis. are important because
the natural object-centered coordinates are not curved. The bulk of the paper is
concerned with Straight Homogenous Generalized Cylinders, in which th,; croms-
sections have constant shape but vary in size.

The results begin with deriving formulae for points and surface normals for these
shapes. Theorems are presented concerning the conditions under which multiple
descriptions can exist for a single solid shape. Then, projcctions, contour
generators, shadow lines, and surface normals are analyzed for some subclasses of
shapes. The strongest results are obtained for solids of revolution (which we have
named Right Circular SHGCs), for which several closed-form methods for analyz-
ing images are presented.

[Shafer 83b] Shafer, S.A.
Shadow Geometry and Occluding Contours of Generalized Cylinders.
PhD thesis, Carnegie-Mellon University, May, 1983.
Also available as CMU-CSD technical report CMU-CS-83-131.

Given a line drawing from an image with shadow regions identified, the shapes of the
shadows can be used to generate constraints on the orientations of the surfaces
involved. This thesis desribes the theory which governs those constraints and
shows how it can be applied to polyhedra and certain types of generalized
cylinders.

[Shafer 84] Shafer, SA.
Optical Phenomena in Computer Vision.
In Proceedings of the Canadian Society for Computational Studies of Intelligence Conference,

London, Ontario, Pages 1-34. May, 1984.
Computer vision programs are based on some kind of model of the optical world, in

addition to whatever significance they may have in terms of human vision, al-
gorithims, architectures, etc. There is a school of research that addresses this aspect
of computer vision directly, by developing mathematical models of the optics and
geometry of image formation and applying these models in image understanding
algorithms. In this paper, we examine the optical phenomena that have been
analyzed in computer vision and suggest several topics for future research.

The three topics that have received the most attention are shading (and glossiness),
color, and shadows. Shape-from-shading research, while producing many inter-
esting algorithms and research results, has primarily been based on very simplified
models of glossiness. Since realistic gloss models exist within the optics com-
munity, we can expect improved computer vision algorithms in the future. Color
work in the past has similarly concentrated on developing sophisticated algorithms
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for exploiting very simple color models, but a more realistic analysis technique has
recently been proposed. Shadows have been used by a number of people for
simple analysis such as locating buildings in aerial photographs, and a more com-
plex theory already exists that relates surface orientations to shapes of shadows in
the image.

A number of problems plague this kind of research, however, including the current
inability to model real complexities of illumination and reflection, and the nagging
feeling that humans don't seem to rely upon very quantitative analysis of optical
properties of materials and illumination. These questions are also addressed.

[Smith 84] Smith, D., and T. Kanade.
Autonomous Scene Descriptions with Range Imagery.
In Lee S. Baumann, Editor, Proceedings of the DARPA Image Understanding Workshop,

Science Applications, Inc., MacLean, VA, October, 1984.
This paper presents a program to produce object-centered three-dimensional descrip-

tions starting from point-wise 3D range data obtained by a light-stripe rangefinder.
A careful geometrical analysis shows that contours which appear in light-stripe
range images can be classified into eight types, each with different characteristics in
occluding vs. occluded and different camera/illuminator relationships. Starting
with detecting these contours in the iconic range image, the descriptions are
generated moving up the hierarchy of contour, surface, object, to scene. We use
conical and cylindrical surfaces as primitives. In this process, we exploit the fact
that coherent relationships, such as symmetry, collinearity, and being coaxial,
which are present among lower-level elements in the hierarchy allow us to
hypothesize upper-level elements. The resultant descriptions are used for match-
ing and recognizing objects. The analysis program has been applied to complex
scenes containing cups, pans, and toy shovels.

[Specker 83] Specker, P.
A Post-Processing Algorithm for Time Domain Pitch Trackers.
Technical Report CMU-CS-83-104, Carnegie Mellon University, Computer Science Depart-

ment,
January, 1983.

This paper describes a powerful post-processing algorithm for time-domain pitch track-
ers. On two successive passes, the post-processing algorithm eliminates errors
produced during a first pass by a time-domain pitch tracker. During the second
pass, incorrect pitch values are detected as outliers by computing the distribution
of values over a sliding 80 msec window. During the third pass (based on artificial
intelligence techniques), remaining pitch pulses are used as anchor points to
reconstruct the pitch train from the original wavefoim. The algorithm produced a
decrease in the error rate from 21% obtained with the original time domain pitch
tracker to 2% for isolated words and sentences produced in an office environment
by 3 male and 3 female talkers. In a noisy computer room errors decreased from
52% to 2.9% for the same stimuli produced by 2 male talkers. The algorithm is
efficient, accurate, and resistant to noise. The fundamental frequency micro-

structure is tracked sufficiently well to be used in extracting phonetic features in a
feature-based recognition system.

[Thorpe 84] Thorpe, CE
Fido: Vision and Navigation for a Robot Rover.
PhD thesis, Carnegie Mellon University, Computer Science Department, December, 1984.
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Fido is a vision and navigation system for a mobile robot. Using only stereo vision,
Fido is capable of guiding a robot through clutter to reach a goal. Fido starts with
no preloaded map of the world, and needs no special preparation of the environ-
ment; it works in the real world rather than in a toy environment. This thesis
describes Fido's major contributions in path relaxation, interest operators, con-
straints, and parallel decomposition. The thesis concludes with a recommendation
for hardware and software improvements for the current vehicles, and for the
design of future mobile robot systems.
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4. Machine Intelligence

To significantly improve their performance, artificial intelligence systems need the ability to acquire,

represent, organize, and effectively utilize large amounts of knowledge. Our work in this area displays two

facets:

* Knowledge Representation addresses the automated acquisition of knowledge (factual, episodic,
procedural, heuristic), its internal organization, and the inference processes that access the resul-
tant knowledge bases to solve interesting problems.

e Knowledge Engineering addresses issues of the construction of computer systems that can solve
complex real-world problems by capturing and codifying human expertise.

This chapter reports on recent achievements in these broad areas of artificial intelligence research at Carnegie

Mellon University.

4.1. Knowledge Representation

Our principle objective in knowledge representation research is to explore methods that enable automated

systems to perform effectively in ill-structured problem domains, though the systems may have only incom-

plete or unreliable knowledge. Our central strategy is to investigate various methods in the context of

well-defined problems (rather than in vacuo) such as robot planning, algorithm design, massively-parallel

architectures, and counterplanning scenarios such as playing chess. These task areas serve merely as vehicles

for discovering and validating general problem-solving methods. Creating and refining the methods advances

artificial intelligence.

During our investigations we focused on developing substantial cognitive architectures that can learn, solve

problems, plan. and reason across varied task domains. The NETL and Boltzmann projects examine how to

construct massively parallel associative memories, realizable (in principle) directly on the hardware. The Soar

architecture provides a universal problem-solving engine that unifies all the weak methods (heur stic search,

means-ends analysis, etc.) and can improve its performance with experience by chunking search-control

knowledge. Prodigy is a learning apprentice system: a general problem solver that can take instruction,

explore its environment, and analyze its own behavior to achieve expert-level behavior within a large problem

class, chiefly complex planning domains. Additionally, we are developing and refining more well-defined

techniques, such as transformational and derivational analogy, application coefficients for heuristic evaluation

functions, algorithm design methods, and knowledge acquisition techniques for expert systems. The follow-

ing sections discuss specific projects in greater detail.

let
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4.1.1. Machine Learning

We view machine learning as an integral part of planning and problem-solving where the learner must

acquire both problem-solving expertise in general or specific domains and more transitional facts and general

concepts. Our main accomplishments in the reporting period are summarized below:

* We developed a problem-solving method called transformnational analogy, capable of exploiting
past experience by transforming solutions of related problems into the solution of the new
problem at hand [Carbonell 82]. The primary benefit was a qualitative speedup in problem-
solving as the system's relevant experience in related areas could be transferred and exploited.
rather than rederived at much cost in combinatorial search. Secondary benefits included the
automated induction of general plans from multiple analogically-related solutions to similar
problems. In essence, transformational analogy provided the grist for an inductive generalization
engine, one capable of abstracting general plans from the shared aspects of multiple similar-
instance solutions. These general plans can be applied directly with little need for back-to-basics
problem-solving, or even analogical transfer. Of course, for qualitatively different classes of
problems, the general problem-solver is still required. In such a manner, our Aries problem-
solving systems can learn from experience-and can solve, effectively and quickly, complex
problems in familiar areas, but must resort to the much slower step-by-step exploration of the
problem space for less familiar areas.

* Subsequently we developed the derivational analogy problem-solving method to augment the
earlier transformational analogy paradigm. This method transfers strategies successful in similar
past problem-solving instances solve new, possibly more complex problems and serves as a basis
for inductive generalization of new planning methods. Thus, derivational analogy serves to learn
not just general plans, but planning strategies. Those which are transferred from similar problem-
solving episodes are the strategies themselves and the justification of why they worked (or why
they failed to work). Derivational analogy is a central technique incorporated into the Prodigy
and World Modellers projects discussed below.

e Recently we designed and implemented the first version of the world modellers robotic simulator
[Hood 82]. The system's three-dimensional, Newtonian physics simulator enables exploration
and verification of robotic planning and learning techniques without requiring a "real" robot-
and all the difficult vision and locomotion problems that entails. Our work investigates
fractioning, causal attribution and T-macro techniques for focused learning in the reactive simula-
tion environment. The ability to run goal-directed experiments in a reactive environment, to
reason about their effects, to formulate hypotheses explaining why reality deviates from expec-
tations, and to design further experiments seeking to confirm, augment or falsify these hypotheses
in a rational symbolic manner is a crucial component of learning heretofore ignored by most of
the symbolic-reasoning/Al machine-learning community.

* The Soar and Boltzmann projects contain significant machine learning components in addition to
their central concern with building a general cognitive architecture.

4.1.2. Adversarial Problem Solving
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Representing Uncertain Knowledge with Continuous Functions

An important aspect of intelligence is arriving at conclusions in the absence of complete knowledge or in

the presence of uncertain future events. Uncertain knowledge must be represented continuously and united

effectively with symbolic knowledge. The advent of application coefficients in non-linear heuristic evaluation

functions has made the integration of uncertain knowledge with symbolic knowledge possible [Berliner 81].

We have successfully developed two direct descendants of this new technology: lago, our world-champion

Othello-playing program [Rosenbloom 81], and BKG, our equally successful backgammon program.

The performance of BKG, which defeated the World Backgammon Champion, improved greatly when we

changed its knowledge representation from the form of rules to continuous functions [Ackley 83]. A

question coming out of this work is how such continuous knowledge can be communicated to the outside

world, since we must convert to a discrete representation and find words that match the concepts being

expressed. The QBKG system [Berliner 82] was able to compare a user-selected backgammon move to BKG's

own best choice, then give a detailed analysis of the pros and cons of each move. QBKG has made a

considerable impression on the expert system field, where little had been done with continuous knowledge

representations prior to our research. We have distributed over 2000 copies of the QBKG System report in

response to requests.

The B* search is still demonstrably the best selective search for adversary problems. In his work with the B*

algorithm, Palay discovered that substituting distribution functions for ranges in representing node values

significantly improved B's performance [Palay 83]. He showed this in a series of simulations using standard

chess tactics problems. However, manipulating distributions and searching distribution data remain ex-

tremely time consuming. Implementing a practical system awaits hardware that can efficiently accomplish

these taskL

Using Chunking to Solve Chess Pawn Endgames

When using simple representations in evaluating competitive situations like chess, the system must employ

search techniques to find consequences undiscerned by the representation used. For example, when an

evaluation function examines only the roles of single pieces, it misses much of what could be understood by

examining interactions among related pieces. The latter strategy involves what psychologists call "chunking"

and we use that term when describing our work.

Examining a chess board as a set of piece-sets rather than as a set of single pieces provides a more profound

representation of the situation. Campbell and Berliner developed such a representation in the chess pawn

endgame they studied [Campbell 831. They devised a method of chunking the various possible configurations

and the resulting Chunker program [Berliner 83] played certain positions in its domain 1013 times faster than
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the best programs using the old representation. Chunker found two mistakes in the literature relating to this

endgame, though this particular game has been the subject of study for over 300 years. Chunker, now a

complete master of its domain, makes no mistakes in assessing any position in this endgame. Campbell's and

Berliner's approach saves many orders of magnitude of search. They have expanded their work to include the

entire domain of chess pawn endgames.

Massive Search using Constraint Satisfaction

Berliner developed a program named Superpuzz that solves card game puzzles. Though equipped with an

excellent knowledge function and a rapid search algorithm, Superpuzz initially failed to outperform its

creator. After Berliner added constraint satisfaction methods that ruled out branches of the search deter-

mined not to contain any possible solutions, Superpuzz always outperformed Berliner and it became highly

improbable a human would find better solutions.

Berliner studied three variants of the puzzle along with several different search techniques and evaluation

functions [Berliner 84]. He found that the constraint satisfaction technique helped selective (best-first)

searches with knowledgeable evaluation functions significantly more than it aided other searches. He also

discovered that a method he calls "adventurousness," which gives greater credit to achievement than debit for

effort expended effort, decreases time-to-solution in all search paradigms.

4.1.3. Massively Parallel Cognitive Architectures

A critical problem in knowledge representation is storing and accessing immense amounts of real-world

knowledge. Our research in this area led to the design and development of the NETL system, a specialized,

massively parallel machine architecture. Essentially, NET is a semantic network data structure with a very

simple hardware device representing each network node and link. Its design allows it to solve search and

inference problems that had proven intractable to the traditional serial heuristic approaches.

*During the 1981-84 period, our NETL research emphasized two themes: developing a practical approach to

implementing NETL in hardware and developing a solid formal understanding of the knowledge represen-

tations it uses, particularly in the area of default reasoning and exceptions. The first theme led to several

preliminary designs for a million-element NETL machine and inspired the Connection Machine work at MIT.

The second theme led to a formal mathematical theory of inheritance [Touretzky 84] that has been influential

in the knowledge representation community.

In time, we shifted our emphasis away from NETL, where knowledge is tied to a specific hardware element,

* to the Boltzmann Machine architecture [Fahiman 83). The Boltzmann architecture has three advantages: first,

it can extract new knowledge from examples, rather than requiring each new fact to be input by hand; second,
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it employs a distributed representation that is inherently fault-tolerant and therefore better suited for very

large-scale VLSI implementations', third, a Boltzmann machine resembles a neural network and may provide

us with some useful models for understanding information processing in the brain. We continue to pursue

the Boltzmann approach vigorously and it has given rise to an entire family of related architectures.

p 4.1.4. A Universal Problem-Solving Architecture

Within this contract period we developed an architecture for general intelligence, called Soar [Laird 84a],

that unites many of the important ideas and mechanisms concerning production systems and problem spaces

we have explored for twenty years. Soar adopts a uniform view that all cognitive activity can be represented

as search in a problem space [Newell 80F-whether problem-solving or routine action. Thus, Soar is a

problem-solving architecture whose primitive actions are selecting problem spaces, states, and operators, and

applying the operators by selecting another implementation problem space. We realized Soar within a

production system (a slight modification of Oi'r [Forgy 84]) that uses both search control and the implemen-

tation of primitive operators. From the expert systems point-of-view, Soar provides a production system

framework that is hierarchically organized in terms of problem spaces, instead of a single flat set of rules.

The Soar framework embodies several other important discoveries and integrations, among them the prin-

ciple of universal subgooling jaird MIb. Soar, as with many other systems, focuses its attention by te

difficulties it encounters, but because the architecture is cast at the problem-solving level, these difficulties

(called impasses) can all be detected directly by the architecture. Thus the architecture itself can detect the

need for a subgoal, develop its initial characterization, and set it up. This subgoaling method has far-reaching

consequences. For example, it permits Soar to recognize instantly when any goal at any level in the goal stack

has succeeded or failed, and to jump back immediately to continue from that point. Impasses become the

fundamental basis for detecting conflict resolution needs. The production system no longer has a conflict-

resolution stage, but instead lets all productions fire in parallel.

The study of weak methods (generate and test, means-ends analysis, etc.) has been a significant part of our

research effort since the late 1960s when it became clear how important they are in all problem-solving

systems. Soar represents an advance in implementing weak methods. In effect, when provided with the

essential knowledge on which a particular weak method is based, Soar behaves according to that method.

This was originally called the universal weak method [Lard 83], although it now seems preferable to term this

simply an implicit mode of methods representation.

Each weak method of course builds on and exploits some explicit knowledge about the task structure. A key

issue is whether a production system needs additional procedural knowledge to exploit the task knowledge.
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Standard programming systems need additional procedural knowledge, Soar doesn't. This occurs because:

(1) all the weak methods turn out to be search methods fundamentally and Soar embodies heuristic search in

its very architecture; (2) Soar's use of production systems to represent search control provides a decom-

position that permits each bit of heuristic knowledge to be given separately; and (3) the weak methods are

themselves quite simple, being in effect the "obvious" ways of exploiting a small amount of knowledge about

the task.

Soar also learns as it solves problems. Rosenbloom and Newell researched how human performance at

problem-solving improves with practice [Rosenbloom 831. They developed the theory that the memory

organization method called chunking in Cognitive Psychology provides a sufficient mechanism for improved

performance. Then they implemented the chunking theory in a series of production system architectures

(xAPs1 and XAPS2 [Rosenbloom 82]), and demonstrated that creating chunks (as productions) not only per-

mits continuous improvement, but follows the same quantitative law of improvement as humans do (the

so-called power law of practice [Rosenbloom 82]). In late 1984 they transferred their ideas into Soar's

problem-solving architecture; now Soar chunks all of its goal results. If Soar ever needs to solve a previously

solved goal, it will be able to do so directly without re-solving the problem. The chunking mechanism seemed

at first to be one of pure practice, but now appears to be a general mechanism that transfers to new situations.

They are now exploring the hypothesis of whether it is sufficient for all types of learning.

The Soar architecture unifies many of our research advances made during the 1981-84 period and preceding

* research contracts as well. We prepared a major demonstration of Soar by developing Ri-Soar [Rosenbloom

84] that accomplished the same task as R1, the 3300-rule vAx-configuring system [McDermott 821, yet in-

cluded only 25% of Ri's functionality. Ri-Soar is an example of how a general problem-solving system can

be transformed into a knowledge-intensive system by the addition of search control. It demonstrates that

chunking is sufficient to let the Ri-Soar system develop this same search control from its own experience,

supporting the basic proposition that Soar learns about whatever task it tackles.

4.2. Knowledge Engineering

4.2.1. An Algorithm Design Assistant

Kant and Newell have been exploring the domain of algorithm design as an instance of problem-solving

and expert behavior. They assert that algorithm design demands much more intellectually in comparison to

most expert system tasks, that it combines problem-solving and expert behavior in important ways, and that it

may offer a new approach to program synthesis, in that the output of an algorithm design system provides a

new knowledge structure for specifying the program synthesis task. During the contract period we moved
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from an initial formulation of the task and the selection of a specific domain, geometric algorithms (such as

designing an algorithm for finding thc convex-hull planar point-set). We then developed the basic represen-

tation and methods (by analyzing in dctail thc behavior of human experts), to the design and implementation

of a system, Designer, for doing the task [Kant 84J.

We tackled a wide range of issues in the Designcr project, including a representation for partially specified

algorithms (as a data-flow scheme with associated assertions) and the symbolic execution of these partial

algorithms, in a more general framework than has usually been attempted in programming systems schemes

for symbolic execution. We have advanced it to a point where it can execute many (partial) algorithms and

can design some simple ones, and are nearing our initial benchmark task, designing the convex-hull algo-

rithm.

Designer has grown into a very large system and incorporates both a frame system and a production system.

Due to the successful implementation of Soar, with its extremely clean structure, and to some personnel

changes, we are in the midst of reimplementing Designer in Soar.

4.2.2. Architectures for Fast, Intelligent Search

In order to speed systematic analysis in adversarial search (e.g. minimax with alpha.-beta pruning), we

investigated new methods for parallel decomposition and for performing the search at the silicon level. We

chose chess as the test domain for this emerging general technology, and to that end we designed and

fabricated custom chips for different aspects of the game-some particular to chess, others more general to

decision-making that requires systematic search. These latter chips operate by first downloading a programm-

able decision function and later executing the function at blinding speed.

4.2.3. Massive Search Systems

Intelligent systems can be viewed as working in a space of directly available knowledge, on one dimension,

while searching to obtain more knowledge in a second dimension. Any specific system employs some

combination of these two activities. Humans occupy the high-knowledge, low-search part of the space. In

general, expert systems designers have explored that area, though all regions of the space are of interest.

Game playing programs, especially for chess, have become a mainstay in the high-search, low-knowledge

area, demonstrating that improving the search was the most effective way to attain high performance. We

have been been exploring this path for well over ten years. Within the scope of the present contract, we haveU
made an important breakthrough with a demonstration of a chess system (Hitech) that is substantially better

than any existing system [Ebeling 841.
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Hitech is a high-search, low-knowledge system, not a pure mass-search system, though the knowledge it

contains is extremely important. Its performance has improved significantly as we've added knowledge, and

we have not yet found the system's performance limits. What Hitech does show is that solutions in the

high-search range are finally effective in achieving excellent performance in a task in which humans also

achieve excellence, but by a radically different combination of search and knowledge.

Hitech consists of a workstation host plus a special machine that searches about 175.000 positions per

second. The machine is organized as a set of processors on a common bus and consists of a move generator

(64 copies of a VLSI chip specially designed via the MOSIS facility), a set of evaluation modules, and a memory

unit that remembers previously explored positions and their values. The whole system operates by download-

ing the specific evaluations to be made in the current position, then searching up to 30 million positions to

find the preferred move. Hitech contains all techniques that have proved valuable in our decade of research:

iterative deepening, adaptive coefficients (the SNAC procedure, developed under this research program in

building BKG, our world-champion backgammon program), recalling large numbers of prior search posi-

tions, etc. Hitech won the recent ACM chess tournament against all other programs, and in play against

humans earned an official rating of about 2070, well into the Master range.

4.2.4. Prodigy: A Learning Apprentice

In 1984 we embarked upon the Prodigy learning apprentice project. The system models an insightfll

student, one capable of general problem solving but with little initial knowledge of any given domain. Prodigy

gradually builds up expertise through:

" Introspective assessment and analytical improvement of its planning processes

" Accepting human instruction on domain-specific information, including suggestions for making
the new information operational

" Formulating experiments (either questions to the teacher or procedures to be carried out in its
environment)

* Analytic generalization where a strong domain theory is available, or empirical generalization
when domain knowledge for provably correct generalizations is lacking

Goal regression and weakest-precondition analysis are the central tools for analytic generalization. So far we

have conducted experiments to gather missing information required for weakest-precondition analysis, and to

establish correct analogical mappingL
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4.2.5. Speech Recognition

Our research goal in speech recognition is to generate and verify general techniques for developing high-

performance, special-purpose, knowledge-based systems. The speech domain allows us to formulate and

validate some of these techniques in a practical task. The following paragraphs discuss the two lower-level

aspects of this research. At the uppermost level, this work blends into the User Interface Research discussed

in Chapter 7. See section 7.5 for a discussion of the voice message system.

Acoustic /Phonetic Recognition

Two challenges in computer speech recognition are (a) performing speaker-independent recognition, and

(b) discriminating among speech sounds that are acoustically similar, such as [b] and [d]. Prior to 1981, speech

recognition systems were speaker-dependent and required each new speaker to train the system to his or her

voice. The systems made many errors when the vocabulary items were acoustically similar.

A main goal of CMU speech research between 1980 and 1982 was to demonstrate the ability to perform

speaker-independent recognition of confusable words [Lasry 84]. In order to make the problem tractable, we

decided to recognize letters of the English alphabet spoken in isolation. This task domain provides a useful

and well defined vocabulary that contains many fine phonetic distinctions, as in the set B, D, E, P, T, G, V, Z,

C [Waibel 81].

We decided to build an expert system to model the performance of an expert spectrogramn reader. The

research involved studying speech spectrograms of letters spoken by many speakers, to discover the recog-

nition features needed for each letter; developing feature-measuring algorithms to quantify the perceptually

relevant features'. and using a multivariate classifier to combine the feature values for letter choice decisions.

Our research produced a speaker-independent, isolated letter recognition system called Feature [Stern 83]

Feature performed at levels of accuracy significantly better than any previous system. In speaker-

independent mode, letters were correctly recognized about 90% of the time. When the system was allowed to

automatically learn about the speech patterns of each user, performance rose to 95%.

Word Recognition for Large Vocabularies

The Word Recognition project at CMU has investigated two major topics: efficient search algorithms and

automatic generation of lexical representations. Our goal is to develop a word recognition technique that

deals flexibly with the requirements of large vocabulary recognition.

Controlling the size of the search space becomes a critical problem as the size of a recognition vocabulary

increases. Research on search techniques has focused on identifying effective constraints. Rudnicky, together

with Lehmann, has developed a search algorithm that makes use of several sources of constraint to improve

search efficiency [Rudnicky 82]. Constraint is provided by using two, independently generated speech encod-
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ings: a phonetic lattice and a coarse-class lattice. The coarse lattice is used to identify syllable nuclei and

thereby identify potential word locations. The coarse-class lattice is also used to provide a consistency check.

Phonetic and coarse lattice must agree on their description of the input in order for the search to proceed.

Together these constraints produce approximately a 40-fold reduction in search for a typical utterance, as well

as (somewhat surprisingly) an increase in recognition accuracy [Waibel 82].

Traditional recognition schemes require a substantial effort to construct an accurate representation through

training. Such techniques become less feasible as vocabulary size increases. The goal of our research in this

area is to develop techniques for automatically generating reliable and complete descriptions of lexical items.

Rudnicky has developed a system for the automatic transformation of lexical baseforms ("dictionary

pronunciation") into lexical networks using declaratively specified phonological rules. Hand-labeled speech

was analyzed to produce these phonological rules.

4.2.6. SPAM: Rule-Based Systems for Aerial Photointerpretation

McKeown has begun to explore and develop the use of rule-based systems for interpreting complex, high

resolution aerial photography [McKeown 83]. SP Am, a System for Photointerpretation of Airports using MAP

(see Chapter 3), interprets scenes of the National Airport in Washington, D.C. The system uses map descrip-

tions of the airport layout, and tools for spatial reasoning about size. shape, and position of various airport

features. We focus on building a knowledge base to control image processing primitives and to guide the

image interpretation process. Our long term goal is to develop systems that maintain a world database of

previous events. The world database's expert level knowledge will be able to predict areas for fruitful analysis

and will integrate the analysis" results into a coherent model.

Combining map knowledge and a rule-based system for scene analysis is a new approach to model-based

vision that allows us to decouple the task domain from the low-level image processing tools and to integrate

spatial, general model, and site-specific knowledge within a single framework. Using local evidence, it is

possible to make weak interpretations about the mapping of image segments to a model, and to trigger

continually more refined segmentation hypotheses. Interpretation is performed by recognizing that only a

small subset of the large number of hypotheses are mutually consistent. Inconsistencies can be detected by

analysis of geometric relationships between local features and the application of world knowledge, such as the

typical length of runways, size of hangars and maintenance buildings, and their relative spatial organization

within a general airport cene.

Currently SPAM can extract and identify some runways, taxiways, grassy areas, and buildings in several

images of the National Airport. It cannot yet, however, recognize a complete airport scene that satisfies its
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internal map model. Our research continues in several areas including reliable low-level feature extraction

from the imagery, and the design and implementation of effective recognition strategies using the rule-based

approach. We believe that integrating map knowledge. image processing tools, and rule-based control and

recognition strategies will be prove a powerful computational organization for automated image analysis.
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custom chips performing at a rate of 500.000 moves per second, performance that
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system. We discuss the requirements of a chess move generator in the context of a
chess-playing system and describe how each of these are met by our design.
Details of the chip design are presented along with a description of how the move
generator is built using identical chips.
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every pixel in an image, or to every work in a speech system's lexicon. But, while
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It is becoming increasingly apparent that some aspects of intelligent behavior require
enormous computational power and that some sort of massively parallel comput-
ing architecture is the most plausible way to deliver such power. Parallelism,
rather than raw speed of the computing elements, seems to be the way that the
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brain gets such jobs done. But even if the need for massive parallelism is admitted,
there is still the question of what kind of parallel architecture best fits the needs of
various Al tasks.

In this paper we will attempt to isolate a number of basic computational tasks that an
intelligent system must perform. We will describe several families of massively
parallel computing architectures, and we will see which of these computational
tasks can be handled by each of these families. In particular, we will describe a
new architecture, which we call the Bolzmann machine, whose abilities appear to
include a number of tasks that are inefficient or impossible on the other architec-
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Department,
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OPS83 is a programming language for expert systems applications. It combines the
rule-based programming paradigm of the earlier versions of OPS with the
procedural programming paradigm of conventional programming languages. It is
less restrictive than the earlier versions of OPS in several respects, including the
data structures permitted in working memory and the kinds of expressions that can
be used in the LHSs of rules. OPS83 is a compiler-based language, and it provides
for separate compilation of modules with full type checking across modules.
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The World Modelers Project is a physical simulation system designed to bridge the gap
between real-world sensory and manipulator robotics, and Artificial Intelligence
(AI) research on learning, problem solving, natural language processing and other
cognitive phenomena presently investigated without benefit of direct interaction
with the external world. In the simulation system, various 'organisms' controlled
by AI programs or human users can perceive and act upon the simulated world,
which in turn reflects changes caused by the (possibly concurrent) actions of or-
ganisms, according to internal laws of physics. This paper discusses the 3D simula-
tion system, the graphics-based multi-window user interface, the distributed im-
plementation, and implications for AI research.
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By studying the problem-solving techniques that people use to design algorithms we
can learn something about building systems that automatically derive algorithms
or assist human designers. In this paper we present a model of algorithm design
based on our analysis of the protocols of two subjects designing three convex hull
algorithms. The subjects work mainly in a data-flow problem space in which the
objects are representations of partially specified algorithms. A small number of
general-purpose operators construct and modify the representations; these
operators are adapted to the current problem state by means-ends analysis. The
problems space also includes knowledge-rich schemas such as divide and conquer
that subjects incorporate into their algorithms. A particularly versatile problem-
solving method in this problem space is symbolic execution, which can be used to
refine, verify, or explain components of an algorithm. The subjects also work in a
task-domain space about geometry. The interplay between problem solving in the
two spaces makes possible the process of discovery. We have observed that the
time a subject takes to design an algorithm is proportional to the number of com-
ponents in the algorithm's data-flow representation. Finally, the details of the
problem spaces provide a model for building a robust automated system.

[Korf 83] Korf, R. E.
Learning to Solve Problems by Searching for Macro-Operators.
Technical Report CMU-CS-83-138, Carnegie-Mellon University, Computer Science

Department,
July, 1983.
PhD Thesis.

This thesis explores the idea of learning efficient strategies for solving problems by
searching for macro-operators. A macro-operator, or macro for short, is simply a
sequence of operators chosen from the primitive operators of a problem. The
technique is particularly useful for problems with non-serializable subgoals, such as
Rubik's Cube, for which other weak methods fail. Both a problem-solving
program and a learning program are described in detail. The performance of these
programs is analyzed in terms of the number of macros required to solve all
problem instances, the length of the resulting solutions (expressed as the number
of primitive moves), and the amount of time necessary to learn the macros. In
addition, a theory of why the method works, and a characterizaion of the range of
problems for which it is useful are presented. The theory introduces a new type of
problem structure called operator decomposability. Finally, it is concluded that the
macro technique is a valuable addition to the class of weak methods, that macro-
operators constitute an interesting and important representation of knowledge, and
that searching for macros may be a useful general learning paradigm.

[Laird 83] Laird, J. and A. Newell.
A Universal Weak Method: Summary of Results.
In Proceedings of the IJCAI-83, Pages 771-773. International Joint Conference on Artificial

Intelligence, Los Altos, CA, June, 1983.
Also appears as CMU-CSD technical report CMU-CS-83-141.

The weak methods occur pervasively in AI systems and may form the basic methods for
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all intelligent systems. The purpose of this paper is to characterize the weak
methods and to explain how and why they arise in intelligent systems. We propose
an organization, called a universal weak method, that provides functionality of all
the weak methods. A universal weak method is an organizational scheme for
knowledge that produces the appropriate search behavior given the available task-
domain knowledge. We present a problem solving architecture, called SOAR, in
which we realize a universal weak method. We then demonstrate the universal
weak method with a variety of weak methods on a set of tasks.

[Laird 84a] Laird, John E., Rosenbloom, Paul S., and Newell. Allen.
Towards Chunking as a General Learning Mechanism.
In Proceedings of AAAI-84 National Conference on Artificial Intelligence, Pages 188-192.

American Association for Artificial Intelligence, 1984.
Chunks have long been proposed as a basic organizational unit for human memory.

More recently chunks have been used to model human learning on simple
perceptual-motor skills. In this paper we describe recent progress in extending
chunking to be a general learning mechanism by implementing it within a general
problem solver. Using the Soar problem-solving architecture, we take significant
steps towards a general problem solver that can learn about all aspects of its be-
havior. We demonstrate chunking in Soar on three tasks: the Eight Puzzle, Tic-
Tac-Toe, and a part of the R1 computer-configuration task. Not only is improve-
ment with practice, but chunking also produces significant transfer of learned
behavior, and strategy aquisition.

[Laird 4b) Laird, J. R.
Universal Subgoaling.
Technical Report CMU-CS-84-129, Carnegie-Mellon University, Computer Science

Department,
May, 1984.

The goal of this thesis is to develop a problem-solving architecture where all ap-
propriate knowledge is brought to bear to control all aspects of problem-solving
behavior. Such an architecture allows the creation of completely reflective
problem solvers. We identify a specific capability called universal subgoaling that
together with previous work on a universal weak method makes this possible. With
universal subgoaling, subgoals arise whenever there is a difficulty in performing
the problem-solving functions. In a subgoal, the problem solver brings its
knowledge to bear to reason about and eliminate the difficulty. We identify a set
of requirements that must be met by any problem-solving paradigm and architec-
ture that realizes universal subgoaling. We then describe an implementation of
universal subgoaling within Soar, a production system based on search in a
problem space. We provide two demonstrations of universal subgoaling: (1) Soar
creates subgoals whenever difficulties arise in any aspect of problem solving, (2) it
is possible to encode the knowledge required to produce the weak methods so that
the knowledge is used whenever it is needed. As part of the second demonstration,
we provide a useful taxonomy of the weak methods based on the knowledge
required to encode in Soar.

[Lary 841 Lary, MJ. and R.M. Stem.
Unsupervised Adaptation to New Speakers in Feature-Based Letter Recognition.
In Proceedings of the IEEE International Conference on Acoustics Speech, and Signal

Processing, Pages 17.6.1-17.6.3. IEEE Society, 1984.
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This paper describes two new methods by which the CMU feature-based recognition
system can learn the acoustical characteristics of individual spcakcrs without feed-
back from the user. We have previously dcscribed how the system uses MAP
techniques to update its estimates of the mean values of features used by the
classifier in recognizing the letters of the English alphabet on the basis of a priori
information and labeled observations. In the first of the new procedures described
in this paper the system assumes a correct decision every time it classifies a new
utterance with a sufficiently high confidence level. In the second new procedure
the system adjusts its estimates of the means on the basis of their correlation with
the average values of the features over all utterances. In each case classification
performance using the unsupervised estimation procedures could equal that ob-
tained using speaker adaptation with feedback from the user, although which
method provided the better performance depended on which set of letters was
being classified.

[McDermott 82] McDermott, J.
Ri: A Rule-based Configurer of Computer Systems.
Artificial Intelligencel9(l):39-88, September, 1982.

R1 is a program that configures VAX-11/780 computer systems. Given a customer's
order, it determines what, if any, modifications have to be made to the order for
reasons of system functionality and produces a number of diagrams showing how
the various components of the order are to be associated. The program is currently
being used on a regular basis by Digital Equiptment Corporation's manufacturing
organization. R1 is implertiented as a production system. It uses Match as its
principal problem solving method: it has sufficient knowledge of the configuration
domain and of the peculiarities of the various configuration constraints that at each
step in the configuration process, it simply recognizes what to do. Consequently,
little search is required in order for it to configure a computer system.

[McKeown 831 McKeown, D.M., Jr., and J. McDermott.
Toward Expert Systems for Photo Interpretation.
In IEEE Trends and Applications 1983, Pages 33-39. May, 1983.
Available as reprint no. CH1887-9/83/0000/0033 from the IEEE Society, P.O. Box 80452,

Worldway Postal Center, Los Angeles, Ca. 90080.
In this paper we describe some preliminary results in the design and implementation of

a system for semi-automatic photo-interpretation of high resolution aerial
photographs. The system, SPAM, consists of three major components, an
image/map database, a collection of image processing tools, and a rule-based sys-
tem whose domain of expertise is commercial airports in general, and the National
Airport (Washington D.C.) in particular. We present our design rationale,
describe those components which have been implemented, and discuss design and
implementation currently in progress. Applications for such photo-interpretation
systems include cartography and decision support systems for situation assessment.

[McKeown 84] McKeown, D.M., W.A. Harvey, and J. McDermott.
Rule Based Interpretation of Aerial Imagery.
In Proceedings of the 1984 IEEE Workshop on Principles of Knowledge-Based Systems, 1984.

In this paper we describe the organization of a rule based system, SPAM, that uses map
and domain specific knowledge to interpret airport scenes. This research inves-
tigates the use of rule-based system for the control of image processing and inter-
pretation of results with a respect to a world model, as well as the representation of

4-19



MACHINE INTELUIGENCE

the world model within an image/map database. We present results on the inter-
pretation of an high resolution airport scene where the image segmentation has
been performed by a human and by a region-based imagesegmentation program.
The result of the system's analysis is characterized by the labeling if individual
regions in the image and the collection of these regions into consistent interpreta-
tions of the major components of an airport model. These interpretations are
ranked on the basis of their overall spatial and structural consistency. Some evalua-
tions based on the results from three evolutionary versions of SPAM are presented.

[Newell 80] Newell. A.
Reasoning Problem Solving and Decision Processes: The Problem Space as a Fundamental

Category.
Lawrence Erlbaum Associates, Hillsdale, NJ., 1980.
See Chapter 35.

The notion of a problem space is well known in the area of problem solving research,
both in cognitive psychology and artificial intelligence. The Problem Space
Hypothesis is enunciated that the scope of problem spaces is to be extended to all
symbolic cognitive activity. The chapter is devoted to explaining the nature of this
hypothesis and describing some of its potential implications, with no attempt at a
critical marshalling of the evidence pro and con. Two examples are used, one a
typical problem solving activity (the Tower of Hanoi) and the other syllogistic
reasoning. The latter is an example where the search behavior typical of problem
spaces is7 not clearly in evidence, so it provides a useful area to explore the exten-
sion of the concept. A focal issue used in the chapter is the origin of the numerous
flow diagrams that serve as theories of how subjects behave in tasks in the
psychological laboratory. On the Problem Space Hypothesis these flow diagrams
derive from the interaction of the task environment and the problem space.

[Palay 831 Palay, A.J.
Searching with Probabilities
Technical Report CMU-CS-83-145, Carnegie-Mellon University, Computer Science

Department,
July, 1983.

In this thesis we investigate two issues relating to heuristic search algorithms. The first
and most important issue addressed is the technique used to represent knowledge
within a search tree. Previous techniques have used either single values or ranges.
We demonstrate that probability distributions, using a modified B*-type search
algorithm, can be used successfully as a knowledge representation technique: Our
experiments show that the probability-based algorithm is able to solve a wide
variety of tactical chess problems. Furthermore, using both analytical examples
and experimental results, we show that the use of probability distributions is supe-
rior to the use of either of the previous techniques. Experimentally we show that
the probability-based algorithm solves over one-third more problems than the
comparable range-based algorithm and expands approximately one- tenth the
nodes on problems that both algorithms solve. We also show, again within the
domain of tactical chess problems, that the probability-based algorithm is better
than any alpha-beta program that searches to an average depth of six-ply or less.
The second issue addressed in this thesis is the development of a method that can
be used to generate range-based (and probability-based) knowledge represen-
tations. The inability to generate reasonable rangem has been a major obstacle to

4-20



MACHINE INTIUJGENCE

testing the B* algorithm. We present one method based on the use of a null-move
search that can be used for generating ranges (and distributions) within the domain
of chess

[Rosenbloom 811 Rosenbloom, Paul S.
A World-Championship-Level Othello Program.
Technical Report CMU-CS-81-137, Carnegie-Mellon University, Computer Science

Department,
August, 1981.

Othello is a recent addition to the collection of games that have been examined within
artificial intelligence. Advances have been rapid, yielding programs that have
reached the level of world-championship play. This article describes the current
champion Othello program, lago. The work described here includes: (1) a task
analysis of Othello; (2) the implementation of a program based on this analysis and
state-of-the-art Al game-playing techniques; and (3) an evaluation of the
program's performance through games played against other programs and com-
parisons with expert human play.

[Rosenbloom 82] Rosenbloom, P.S. and A. Newell.
Learning by Chunking: Summary of a Task and a Model.
In Proceedings of the AAAI-82 National Conference on Artificial Intelligence, Pages 255-257.

The American Association for Artificial Intelligence, August, 1982.
The power law of practice states that performance on a task improves as a power law

function of the number of times the task has been performed. In this article we
describe recent work on a model of this effect. The model, called the chunking
theory of learning, is based on the notion of chunking. A limited version of this
model has been implemented within the Xaps2 production system architecture.
When it is applied to a 1023-choice reaction-time task (encoded as a set of
productions), task performance is improved (measured in terms of the number of
production system cycles). Moreover, the practice curves are power law in form.

[Rosenbloom 83) Rosenbloom, P.S.
The Chunking of Goal Hierarchies (A Model of Practice and Stimulus-Response

Compatibility).
Technical Report CMU-CS-83-148, Carnegie-Mellon University, Computer Science

Department,
August, 1983.

In this thesis we present an integrated theory for two phenomena: practice and
stimulus-response compatibility. It is a theory that is both psychologically plausible
and useful as a learning mechanism for Al systems.

The work on practice is based on our earlier investigations that showed that: (1) when
human performance is measured in terms of the time required to do a task, it
improves as a power-law function of the number of times the task has been per-
formed: and (2) that a model of practice based on the concept of chunking was
capable of producing power-law practice curves.

The previous work established the feasibility of the chunking theory for a single task,
but the implementation was specific to that one task. In this thesis we develop a
modified formulation of the chunking theory that allows a more general im-
plementation. In this formulation, task algorithms are expressed in terms of
hierarchical goal structures. These algorithms are simulated within a goal-based
production-system architecture, designed for this purpose. It improves the perfor-
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mance of the system by gradually reducing the need to decompose goals into their
subgoals.

This model has been successfully implemented and applied to the task employed in the
previous work, and to a set of variations on three stimulus-response compatibility
tasks. Compatibility is a topic for which there is still no metric theory. We provide
two formulations of such a theory. Both formulations of this model provide good
fits to the data from the three compatibility experiments.

[Rosenbloom 84] Rosenbloom, P.S., Laird, J.E., McDermott, J., Newell, A.,and E. Orciuch.
Ri-Soar: An Experiment in Knowledge-Intensive Programming in a Problem-Solving Ar-

chitecture.
Pattern Analysis and Machine Intelligence7:561-569, January, 1984.
Also available in CMU-CSD technical report CMU-CS-85-110, and the Proceedings ofthe

IEEE Workshop on Principles of Knowledge-Based Systems, IEEE Computer Society,
December 1984.
This paper presents an experiment in knowledge-intensive programming in Soar. In

Soar, knowledge is encoded within a set of problem spaces, yielding a system
capable of reasoning from first principles. Expertise consists of additional rules
that guide complex problem-space searches and substitute for expensive problem-
space operators. The resulting system uses both knowledge and search when
relevant. Expertise knowledge is acquired either by having it programmed, or by a
chunking mechanism that automatically learns new rules reflecting the results im-
plicit in the knowledge of the problem spaces. The approach is demonstrated on
the computer-system configuration task, the task performed by the expert system,
Ri.

[Rudnicky 82] Rudnicky, A.I., A.H. Waibel, and N. Krishnan.
Adding a Zero-Crossing Count to Spectral Information in Template-Based Speech

Recognition.
Technical Report CMU-CS-82-140, Carnegie-Mellon University, Computer Science

Departuet,
October, 1982.

Zero-crossing data can provide important feature information about an utterance which
is not available in a purely spectral representation. This report describes the incor-
poration of zero-crossing information into the spectral representation used in a
template-matching system (CICADA). An analysis of zero-crossing data for an ex-
tensive (2880 utterance, 8 talker) alpha-digit data base is described. On the basis of
this analysis, a zero-crossing algorithm is proposed. The algorithm was evaluated
using a confusable subset of the alpha-digit vocabulary (the 'E-set'). Inclusion of
zero-crossing information in the representation leads to a 10-13% reduction in
error rate, depending on the spectral representation.

[Stern 831 Stern, R.M. and MJ. Lasry.
Dynamic Speaker Adaptation for Isolated Letter Recognition Using MAP Estimation.
In In Proceedings of the IEEE International Conference on Acousticx Speech, and Signal

Processing, Pages 734-737. IEEE, April, 1983.
A dynamic speaker-adaptation algorithm for the CMU feature-based isolated letter

recognition system, FEATURE, is described. The algorithm, based on maximum a
posteriori probability estimation techniques, uses the labeled observations input
thus far to the classifier, as well as the a priori correlations of the features within
and across the various letters of sets of letters (classes). The probability density
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functions (pdo of all the classes are updated simultaneously rather than on a
class-by-class basis so that the pdf of a given class is updated before any obser-
vation from that class has been input. A significant improvement in the recognition
performance was observed for different vocabularies as the system tuned to the
characteristics of a new speaker. Finally, the algorithm was compared to simpler
forms of dynamic adaptation. It produced a faster decrease of the error rate than
the other tuning procedures. After a small number of iterations, however, the
various procedures yielded similar results.

[Touretzky 841 Touretzky, D.S.
The mathematics of inheritance systems.
PhD thesis, Carnegie-Mellon University, Computer Science Department, May, 1984.

[Waibel 811 Waibel, A. and B. Yegnanarayana.
Comparative Study of Nonlinear Time Warping Techniques in Isolated Word Speech Recog-

nition Systems.
Technical Report CMU-CS-81-125, Carnegie-Mellon University, Computer Science

Department
June, 1981.

In this paper we present the description of an isolated word recognition system and a
discussion of various design choices that affect its performance. In particular, we
report experimental results aimed at evaluating several methods to optimize the
performance of dynamic warping algorithms. Three major aspects that have been
suggested in the literature have been investigated: (1) relaxation of the boundary
conditions to allow for inaccurate begin-end time detection, (2) choice of warping
algorithm, e.g., Itakura asymmetric, Sakoe and Chiba symmetric, Sakoe and Chiba
asymmetric, and (3) choice of an appropriate warping window to restrict computa-
tion to a minimum needed for best recognition results. Recognition results were
tested on two vocabularies: the digits and a highly confusable subset of the al-
phabet (e.g., e,b,dp,tg,v,c,z). (1) The relaxation of the boundary conditions
degraded the performance of the confusable subset and the digits. (2) The asym-
metric Itakura algorithm yielded better results for the confusables, while we ob-
tained slightly better results for the digits using the symmetric Sakoe and Chiba
algorithm. (3) The choice of a 100-ms warping window appears to be optimal for

both vocabularies used.

[Waibel 821 Waibel, A.
Towards Very Large Vocabulary Word Recognition.

Technical Report CMU-CS-82-144, Carnegie-Mellon University, Computer Science
Department,

November, 1982.
In this paper, preliminary considerations and some experimental results are presented

in an effort to design Very Large Vocabulary Recognition (VLVR) systems. We
will first consider the applicability of current recognition techniques and argue
their inadequacy for VLVR. Possible alternate strategies will be explored and their
potential usefulness statistically evaluated. Our results indicate that suprasegmen-
tal cues such as syllabification, stress patterns, rhythmic patterns and the voiced-
unvoiced patterns in the syllables of a word provide powerful mechanisms for
search space reduction. Suprasegmental features could thus operate in a com-
plementary fashion to segmental features.
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5. Research in Programming Technology

Programming Technology concerns all aspects of constructing high-quality hardware/software systems. By

"high-quality", we mean systems that are: demonstrably correct, resource-efficient, produced on time and

within budget, and easily maintained and enhanced. Moreover, such systems must provide a flexible environ-

ment for diverse users. Research in programming technology addresses the principles, knowledge, and tools

(compilers, debuggers, editors, design systems, etc.) used to produce software systems. At CMU, in particular,

our goal is to enhance the ability to produce predictably high-quality hardware/software systems. We

measure progress toward that goal either in terms of increased quality of particular systems (e.g. compilers) or

greater complexity in tasks we can produce at a given quality.

Through our research we have developed techniques, languages, and methodologies that improve program-

ming productivity and produce high-quality systems. The three key areas we focussed on were:
" Automated compiler construction

" Highly secure and reliable systems
" Advanced programming environments

5.1. Automating Compiler Construction

Productivity increases when programmers can work in high-level languages that effectively capture human

reasoning. The compilers and interpreter that translate such languages into hardware-specific machine code

represent some of our most important programming tools. Though we have been writing them for almost

three decades, they remain large and complex. Writing a compiler by hand, even with all our experience,

typically requires ten to twelve man years. Exacerbating the problem is the fact that each unique combination

of language, operating system, peripheral equipment, hardware, etc. can require a new compiler. Our

research has shown how to automate the job by using generic compiler-generating systems. Current tech-

niques reduce the creative effort to approximately one man-year and promise significant improvements in

developing more general programming systems. Automating compiler construction has three major aspects,

discussed in the following sections:
* Analyzing the target language
* Developing effective "generating-system" techniques
* Discovering code-optimizing compiler techniques

5.1.1. Analyzing the target language

Commercial firms are currently testing compiler-generator systems for traditional Algol-like languages (e.g.

C, Pascal, Modula-2). Meanwhile, CMU researchers are experimenting ind refining systems for , an ad-

vanced Algol-like language. Our strategy is to understand the challenge of writing Ada compilers by examin-
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ing the language's strengths and weaknesses and experimenting with compiler techniques that support the

specific features of Ada not found in other imperative languages such as C or Pascal.

We have evaluated Ada and compared it with other programming languages such as Pascal [Habermann
81a, Hibbard 83, Shaw 81, Shaw 84a.. Our work has demonstrated the fundamental use of data abstraction in

Ada has revealed Ada's flexibility and expressive richness [Perls 81, Shaw 82]. While rich at the source level.
Ada also permits efficient machine code. and a smart compiler can "compile out" the complexity to achieve

efficiency comparable to what Pascal and C compilers produce. Designing such clever Ada compilers has

turned out to be far more difficult than we anticipated in 1981.

CMU researchers have developed runtime support techniques and various code generation and optimiza-
tion methods especially for Ada [Bentley 81a]. We designed intermediate representations of Ada programs in
IDL (Interface Description Language) [Nestor 81] and Diana, which has become an international standard
[Goos 811. These representations describe the data used to communicate among collections of related

programs, such as the set of tools in a programming environment [Garlan 84, Barbacci 82a]. Current com-
pilers can generate code correctly with acceptable efficiency. We expect optimizing Ada compilers to reach

the market by the end of the decade.

5.1.2. Creating "generating-systems" techniques

A compiler consists typically of three parts. The front end checks the syntax and semantics of the input

program; the intermediate processor transforms the control flow output of the front end into pseudo machine
code; the back end transforms the pseudocode into genuine machine code. The technique of creating systems

that generate software products can be applied to the various stages of a compiler and to the production of

software systems in general. We asked the following questions:
" Which part of the production process can be automated?
* How should we integrate generated parts with existing code?
" How can we insert special system requirements?
" How should the system represent and process target system descriptions?

Generators have been produced for the front end of compilers, particularly for handling syntax. Creating
generators for the back end is challenging because no description formalism exists as for front end (BNF), and
quality code generators require sophisticated code optimization specific to the target system.

Our main achievement in this area is the design and implementation of a Back End Compiler Generator
System: PQCC (Production Quality Compiler Compiler). PQCC is a sophisticated system that produces

efficient code generators for various machine architectures. PQCC requires three types of input:
* an IDL description in intermediate code
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" an ISPS description of the underlying hardware
* a macro library of hardware-specific code optimizations

PQCC has mastered Modula-2, the intermediate step from Pascal to Ada. The system has been perfected to

the point where PQCC is superior to commercial products for Pascal and C, and can handle machines of the

DEC and IBM variety.

5.1.3. Finding code optimizing compiling techniques

The final aspect of a Compiler Generator that we investigated was compiling techniques with code op-

timization. As mentioned earlier, quality code generators require sophisticated code optimization. To achieve

the required level of code optimization, we considered the representation of the intermediate code, the input

describing the machine hardware, and known optimization techniques. CMU produced two demonstration

systems of Ada environments. The main focus of the Gandalf project, the first system, is automation and

generic programs(see Section 5.3) in generating an Ada environment [Habermann 81b]. The Gandalf-

generated Ada environment's knowledge of Ada syntax and semantics prevents the user from making syntac-

tic and semantic errors. An Ada program generated by Gandalf is guaranteed to be free of syntax errors and

static semantic violations.

CMU's second demonstration system of an Ada environment, the Ada+ project, focussed on integrating an

Ada compiler with an operating system and extending the operating system with Ada tools. The project has

produced an Ada compiler on the Spice-Accent operating system, concentrating on version control tools and

automatic recompilation [Habermann 81b]. As a side effect of this project, we have gathered useful infor-

mation on peculiarities of Ada code generation.

5.2. Highly Secure and Reliable Systems

In a secure, reliable system, the key programs must be absolutely correct and circumventing them at

runtime should be extremely difficult. The requirement for absolute correctness puts a tremendous burden

on system designers to show that their design is secure and on implementors to demonstrate that their product

accurately reflects the design. Achieving runtime reliability demands that designers compensate for inevitable

hardware failures. Our key strategies for meeting the dual challenge of security and reliability are redundancy

and verification.

Redundancy permits reliability checks and protects against hardware failures but has been unpopular in

uniprocessor machines because it adds execution time overhead. However, multiprocessing systems, dis-

tributed systems, and computer networks, through their parallelism and concurrency, now offer promising
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solutions to the time problem. Decreasing hardware costs, of both processors and memory, make it increas-

ingly feasible to trade processing cycles for redundant hardware.

The programming technology community has mastered verification for sequential programs in standard

programming languages, but large systems and parallel or concurrent computations pose additional problems.

Techniques suitable for sequential programs fail to capture concurrency concepts such as temporal event

ordering. Fortunately, research on verification thrives in computational models abstracted from real system
designs. One can, for example, investigate how to synchronize or schedule events in distinct processes

without considering the specific tasks these processes carry ouL

Our research has stressed relevance to working systems. We have pursued three parallel paths that combine

reliability and verification goals within real multiprocessor environments:
" Verification concepts, techniques, and applications on parallel architectures
" Design and implementation of parallel architectures and their software
* Fault tolerance and reliability support in paiallel systems.

5.2.1. Design and implementation of parallel architectures and software

Research in parallel architectures for security and reliability has led to the design and implementation of

both hardware and software for tightly coupled multiprocessors, loosely coupled multiprocessors, and systems

distributed on computer networks.

CMU's multiprocessor research spans the past 15 years. Our design and implementatio' of tightly coupled

multiprocessors goes back to the C.mmp machine which consisted of sixteen processors having access to any

one of sixteen 256K memory units on an instruction by instruction basis. We built a loosely coupled

multiprocessor, Cm*, out of variable clusters of processors and memories connected through computer nodes
responsible for translating remote program and data calls(Kmaps). This architecture is particularly suited for

increasing reliability through redundancy [Harbison 82a]. The Kmap translation step facilitates the im-

plementation of security because it includes both address translation and authorization checks. Applications

on this architecture show great promise for speeding up execution time.

Over the past five years, CMU has gained extensive experience in networking and using distributed systems

on networks. Reliability can be greatly enhanced by replication and redundancy. This has been

demonstrated in the Distributed Sensor Net project (see Chapter 6) of which the Spice project is an offspring

[Harbison 82b]. A particular issue of protection arises if simultaneous access to resources is a potential threat

to consistency of the network state. Our work has shown the general applicability of the concept of "atomic

transactions" and how these can be implemented on local area networks for a variety of tasks.
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5.2.2. Verification concepts, techniques, and applications on parallel
architectures

Testing serves as an engineering aid to observe behavior and fine tune systems. While testing can show the

presence of flaws or errors, but not their absence, verification assures the absolute correctness of an im-

plementation.

One of the mosi productive techniques for sequential programs is Hoare's axiomatic approach. This ap-

proach translates each language construct into a statement in elementary logic: "A and B", "A implies B", or
"not A." Extending this to concurrent computations, "temporal logic" allows statements involving time, such

as "at some time in the future" or "will be true forever" [Clarke 83a]. We designed and implemented a

temporal logic verification system. It can handle parallel designs that can be translated into a finite state

transition diagram. Network protocols and process communication on parallel architectures satisfy this con-

dition. The only systems excluded from this verification method are those that can add or generate resources

dynamically [Clarke 82a, Clarke 83b]. A particular achievement has been the use of the verification system for

proving the correctness of some VLSI chip designs. These designs are typically described by a diagram of

more than 1000 states. In several cases, this verification system found subtle design flaws that had escaped the

most careful scrutiny of its designers and testers [Clarke 83c]. Researchers are extending these verification

techniques to apply to transactions in concurrent computations ISpector 83].

5.2.3. Specific design of fault tolerance and reliability support in parallel

systems

Although hardware failure is inevitable, it can be counteracted by building fault-tolerant systems that make

heavy use of redundancy and replication. Our research has resulted in the design and analysis of a variety of

reconfiguration strategies under the assumption that parts of a system malfunction [Clarke 82b, Harbison

82b]. An important experimental system under construction for increasing reliability is TABS, Transaction-

Based Distributed Systems. TABS achieves reliability mainly through atomic transactions that guarantee

either complete failure of a response to a request or complete success. The network will never get into an

intermediate state in which a modification has partially succeeded, but failed somewhere in the middle

[Spector 83].

Reliability requirements are not uniform for different applications and/or architectures. Therefore, it is

necessary to provide user facilities to express the degree of reliability required in their programming language

[Durham 82]. We demonstrated the usefulness of the parallel approach to redundancy with performance

studies of various architectures [Nestor 81].
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5.3. Advanced Programming Environments

Programming environment research is developing systems that will support both programming-in-the-large

(assembling program modules into complete software systems) and programming-in-the-small (writing the

individual component programs). Such environments are crucial for resolving the serious inability to produce

and maintain large, reliable software systems. In the past, tools (e.g. editors, compilers, etc.) have been

designed and implemented to support particular aspects of the system design process. Despite their valuable

contributions, these tools suffer two serious drawbacks: typically designed in isolation, each having its own

idiosyncratic interface, they show little regard for other tools; they are handcrafted and are therefore difficult

to modify or adapt.

Ultimately, we want to build programming environments that serve as intelligent assistants and not merely

as tool kits. Thus our goal is to provide a collection of integrated, interactive tools that users can easily modify

or extend to meet changing needs at both system and module levels. To reach that goal by the end of this

decade, our work explores the merging of programming environment research from the last five years with

advances in knowledge-based, expert systems.

5.3.1. Designing a programming environment

Our target programming environment is one that supports system developers by:
" Assisting in writing individual programs
" Maintaining system version control
" Coordinating project management
" Providing a uniform user interface
" Integrating tools through a common database

To develop this intelligent environment, we coordinated common facilities, language syntax and semantics,

and developer expertise. We identified and implemented facilities common to a class of programming

environments (e.g. memory and management of input/output and windows). Researchers integrated the
various tools by developing a common database that provides support for meeting syntax and semantics

requirements, and then incorporated expert techniques for using the database. In order to implement our

generation scheme, we had to integrate the implemented parts with an existing operating system. We chose

UNIX to achieve portability. We also devised descriptive tools to allow designers to define the specific facilities

of a programming environment.
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5.3.2. Automatically generating environments

To most easily obtain extensible and modifiable tools, we concentrated on techniques that can generate

programming enviroments automatically. Our basic strategy exploits ideas from automated compiler con-

struction. Figure 5-1 depicts the scheme for generating a programming environment.

Application-specific
Environment description facilities

Generator programs Common facilities

User's programming
environment

Figure 5-1: Generating a programming environment

Our ability to design and implement the Gandalf system demonstrates significant progress in advanced

programming environments. The Gandalf System is a support environment for both the programming en-

vironment designer and the tool builder. In addition to our work with Gandalf, we emphasized providing

supporting environments for the common facilities design [Ball 81, Ball 82]. We designed common facilities

for memory management, database management, and for the user interface, particularly for workstations and

terminals.

The Gandalf system runs on UNIx and provides specific support for describing the syntax and semantics of

specific tools [Habermann 81b, Habermann 81c]. The most recent additions to the system are facilities for

describing runtime support in programming environments [Leverett 82, Garlan 84]. Gandalf implements

runtime support in programming environments through "active database" concepts borrowed from Al. Ob-

ject contain not only passive data, but also active programs (daemons) that function as watchdogs. The

daemon facility is general enough to implement runtime semantic checking and various management func-

tions, including access authentication and project management [Garlan 84, Habermann 81c]. Gandalf has

been used for creating several programming environments for a variety of purposes. Two environments
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deserve particular mention:
" The Gandalf C prototype

* The Gnome System

The Gandalf C prototype integrates programming-in-the-small with programming-in-the-large by provid-

ing a uniform user interface that defines all interactions in terms of editing operations. The compiler and

debugger are integrated into the environment and incremental compilation is automatically performed when

possible. Debugging takes the form of editing a running program [Habermann 81b]. Programming-in-the-

large focuses on system configuration control. The user can define modular interfaces, versions and system

configurations that group these versions into executable systems [Goos 81, Habermann 82a, Habermann 82b].

The purpose of the Gnome System is to support novice programmers learning to program in Pascal. The

system provides incremental compilation and has complete knowledge of Pascal's syntax and semantics.

Gnome is an interactive system (as all Gandalf products are) that constructs the programs in response to user

commands. Since all programs are written by the system, syntax and semantics errors cannot arise. The

system provides all the advantages to its users of interacting with an intelligent assistant who knows the rules

perfectly. This allows the user to concentrate on substance rather than on form. The Gnome System is a high

quality product that has gone through several design and implementation iterations [Feiler 82].
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are described. Low-level operating system support, based on a two-level capability-
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A formalism for specifying the concurrency properties of such types is developed,
based on dependency relations that are defined in terms of an abstract type's
operations. The formalism requires that the specification of an abstract type state
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actions in a general purpose distributed system, each node can execute a trans-
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system levels. The transaction model that the kernel supports must permit ar-
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techniques must be developed for specifying the synchronization and recovery
properties of abstract types that are used in transactions. Existing mechanisms for
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6. Research in Distributed Sensor Networks
A Distributed Sensor Network (DSN) is a physically dispersed collection of computers and sensors coupled

loosely through a communications network. Network computers monitor a target environment by cooperating

to process sensor data. Distributing a task so the processing nodes closest to the sensors can do considerable

autonomous processing and decision making presents several challenges. Consider, for example, a network of

processors and microphones assigned to track a moving object. At run time, the system must configure itself

based on current information about the terrain, knowledge about the object under surveillance, and the state

of the network itself. Moreover, in the event of a hardware or software failure in one of its components, the

system should be able to reconfigure itself and continue operating with minimal overall performance degrada-

tion. Our goal was to design and implement such a system.

During the contract period we designed and implemented the following software systems:I
Accent, a communication-oriented operating system whose primitives support transparent net-
working, and system reconfiguring and rebinding

* Network interprocess communication protocols that support dynamic rebinding of active com-
municating computations

" Matchmaker, an interface specification language

" Stardust, a system for dynamic load balancing and fault compensating reconfiguration

The software we built during the contract period has proved valuable in demonstrating key DSN issues. In

addition, much of it supports other CMU research projects and we have exported some to external

laboratories (e.g.. IBM. DEC, and HP) where it has reappeared in commercial applications.

With the aid of our software, we designed and implemented a DSN testbed to demonstrate the feasibility of

building systems that meet the needs for self-knowledge about current state, fast, effective error reporting, a

capacity for fast localized rebinding, and easy reconfiguration.

6.1. A Communication -Oriented Operating System

Our DSN testbed was implemented using Accent, a network operating system that allows flexible, trans-

parent access to distributed resources. Rashid and Robertson [Rashid 81] developed Accent using an innova-

tive design integrating virtual memory, interprocess communication, and permanent storage. Accent forms

the communication-oriented kernel for CMU's Spice operating system (see Chapter 2). We have designed

Accent to:I
* Provide the ability to create and control numerous independent processes on a single processor

that supports interprocess communication.

*Support multiple, independent, virtual address spaces and a virtual machine specification that can
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accommodate diverse interpretations of process state.

" Supply two kinds of protection:
o Address space protection to ensure that no process can affect another except through

the interprocess communication facility
o Access protection in the communication facility itself to prevent unauthorized com-

munication between processes

" Define interprocess communication in a way that allows transparent debugging, monitoring, and
fault recovery.

" Take advantage of the debugging, monitoring, and fault recovery mechanisms to allow trans-
parent network extension independent of network hardware or protocols.

" Allow processes to view all services, except the basic communication primitives, as being provided
through a communication interface.

* Structure message communication so intermediary processes such as debuggers, protocol con-
verters, or network communication servers, can easily interpret the contents and purpose of mes-
sages.

Accent can be viewed as a number of layers, with the system kernel at the bottom and layers of processes

providing successively more complex services building upon each other. Interprocess communication

through ports provides a uniform interface at each level of the system. Because all system objects and

services, including those provided by the kernel, are accessible through messages sent to ports they can be

transparently distributed throughout the system.

During the contract period, we implemented a complete Accent version for the Perq Systems Corporation's

Perq computer (the initial Spice machinae) and deployed it on a network of nearly 150 Perqs within CMU. In

addition, we made the Accent IPC facility available on DEC VAXes under a modified version of UNIX4.1bsd.

We implemented network interprocess communication servers under both Accent and UNIX and extensively

used this IPC facility within the DSN project (e.g. for implementing the testbed) and other DARPA-sponsored

projects at CMU particularly Spice.

6.2. Protocols for Network Interprocess Communication

Network interprocess communication protocols enhance system security and support Accent's ability to

dynamically rebind active, communicating computations. Implementing Accent demonstrated the value of

integrating memory support with interprocess communication.

Accent exemplifies a truly extensible operating system. Accent's port communication concept allows trans-

parent network communication, process monitoring, and debugging without the underlying operating system

kernel's intervening or even knowing. Moreover, user-state processes may extend the opcrating system

without changing the underlying kernel. The right to send a message to a port cannot be forged or acciden-
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tally created since processes only have local references to ports. This prevents either buggy or malicious

processes from gaining fraudulent access to resources. Further, it allows a process's author to make a positive

statement about his program's correctness, based on precise knowledge of which other processes can com-

municate with it.

Accent's combined memory/communication provides a clean, kernel-transparent mechanism for cross-

network paging whereby one process can manage another's virtual address space and behavior. To ac-

complish this, Accent can either allocate virtual memory from the kernel, sending it to another process, or

explicitly manage page faults. Since ports can be sent in messages to other processes, it is possible for process

A to send its kernel port to process B. The process system is designed so that process B can manage process

A's behavior, much the same way the virtual memory system allows one process to manage another's virtual

memory. This mechanism forms the basis for remote debugging and monitoring systems.

6.3. An Interface Specification Language

One of the thorniest problems in building a distributed system is interfacing the components. Matchmaker

[Jones 85] provides an interface specification language for use with existing programming languages and

offers:

" A language for specify~ing object-oriented, remote procedure call (RPC) interfaces between
processes executing on the same machine or within the Spice network

" A compiler that converts these specifications into interface code for each of the major languages
used within the Spice environment- including C, Perq Pascal, Common Lisp, and Ada-and
runtime support for type-checking, communicating, synchronizing, and handling exception.

We began work on Matchmaker in 1981 and first used it to specify the user interface to the Accent

operating system kernel. Matchmaker evolved into the effective definition of IPC within the Spice environ-

ment and between Perqs and the CS Department's VAXes running our modified uNix operating system. We

have used Matchmaker in the distributed programming support environment for over 500,000 lines of code in

four major languages.

6.4. Dynamic Load Balancing and Fault Reconf igu ration

Stardust [Hornig 84] is both a language and a system for running programs written in that language. As a

language, Stardust provides an applicative language tool for specifyring the control structure of large dis-

tributed systems such as DSNs. As a system, Stardust provides the runtime support to divide computations

into manageable chunks and distribute them throughout the network at runtime. It also can detect error

conditions and respond by reconfiguring the system based on its specification. We designed and built Stardust

to demonstrate the feasibility of automatic load-balancing and fault recovery in such a network.
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We built a Stardust interpreter that successfully handles a variety of distributed system tasks including: the

DSN prototype, a molecular modeling task, and classical algorithms (e.g. quicksort, Fibonacci sequence, etc.).

The Stardust system successfully demonstrated dynamic load balancing, automatically recovered from failure,

and automatically eliminated runtime sub-computation.

6.5. Prototype for Distributed Sensing

With the aid of Accent, IPC protocols, Matchmaker, and Stardust, we built a DSN testbed. The task we

chose to demonstrate it was locating a single noise source by analyzing signals received at several

microphones. Our strategy was to cross-correlate signal pairs to find the source-sensor time-of-flight dif-

ference for each microphone. Each measurement locates the source on a three dimensional quadratic surface.

Combining several measurements gives the source coordinates.

Our experimental laboratory included eight microphones located in an acoustically isolated room. We used

everyday objects including radios, power drills, and various pre-recorded sounds as subjects for our tracking

system. Our computational environment included software running on several vAx-11/780s and Perqs all

residing on a 3MHz Ethernet. Data from each microphone was sent in Ethernet packets to the active proces-

sors. The number and type of computers could be varied and, in practice, ranged between one and twelve.

Data was fed through a series of processes interconnected via the Accent IPC facility. All code was written in

Pascal.

We built several prototype systems. In the fall of 1982 we demonstrated an early version that used DPL-82

[Ericson 82],a language specifically written for distributed processing. The system tracked a moving object to

within a four inch cube around the sound source. In the summer of 1984, we completed a second system using

Stardust. This second system could also track a moving object and displayed greater fault-tolerance in track-

ing than its predecessors.

6.6. Transaction Based Systems

Building on our work in both distributed sensing and distributed processing, we began developing a

Transaction-based System, TABS) [Spector 84a], to explore other reliability issues in distributed systems. Our

research focuses on building, atop the existing Accent operating system kernel, a general-purpose, object-

oriented transaction mechanism. In TABS, we redefine the "transaction" abstraction, extending it to include

sequences of typed operations on objvzs that themselves are instances of shared data types. The TABS

prototype [Schwarz 84] demonstrated the potential of our strategy and guided our continuing research toward

higher-performance systems that can more fully exploit available parallelism.
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7. Research in Cooperative User Interfaces

Computers provide an ever-expanding range of services to a rapidly growing user pool. Decreasing costs

for raw computing power and new computational techniques now encourage designers to shift their primary

focus away from programs that use hardware efficiently to programs that let users interact easily with operat-

ing systems and application programs. Interacting with most current computer systems remains difficult and

frustrating because of rigid, unnatural command languages and poor help facilities. Ironically, interface

hardware improvements in the new powerful personal computers have done little to alleviate interface

problems. Interfaces using such facilities-e.g. high-resolution bitmap displays and speech processing

capabilities-cost much more to implement than those employing simpler technology. Moreover, fancier

technology does not guarantee the users will find the end product acceptable.

In the Cooperative User Interface project, our goal is to design, implement, and evaluate powerful inter-

faces that appear friendly and supportive to .users. We also aim to construct our interfaces so many different

application programs can use them. During the 1981-84 period, we completed designing and implementing a

prototype user interface management system. Cousin, for the Perq Systems Company's Perq, a powerful, r

bitmapped workstation. Cousin-Spice supports standardized communication between application programs

and a centralized user interface program using graphical objects such as forms and menus. We also developed

a command interface to the UNIX operating system. Cousin-UNIX provides flexible parsing of a UNIX-style

language, interactive error correction of command line errors, and readily accessible help. These interfaces

have allowed us to explore directly the following issues inherent in a truly cooperative user interface:

" Robust communication-an ability to interact with users unhindered by omissions, intejections,
and restarts

" Robust Flexible Parsing-a way for the computer to fill in contextual information and tolerate
syntax deviations by the user.

* Cooperative error-correction--ways to shorten users' mistake-recovery time

"ktedia-rich communication-an ability to exploit, for example, high-resolution graphics, voice
recognition, and pointing devices

" Speech and Natural Language Integration-ways to integrate speech and natural language into
interfaces that make man-machine communication more natural for the user

" Explanation-ways to make help systems easier to use and to improve users' knowledge of the
system's current state.

Graceful interaction with users can be realized using multiple technologies, including: graphics, menus, I
natural language, speech, well-designed command languages, etc. Here we report on our research in develop-

ing natural language interfaces tolerant of errorful, incomplete, or ungrammatical user input, and on its

natural extension to the integration of speech and natural language processing using the same basic flexible-
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parsing technology.

7.1. Robust Communication

The basic thrust of this area of research is to identify all the information that needs to pass between user and

system to accomplish the user's goals, and to develop ways of making this information transfer as efficient and

natural for the user as possible.

We developed a contextual interpretation mechanism that follows human intuition closely enough to be

natural, but requires no significant cognitive modeling. Our mechanism interprets anaphoric pronouns and

noun phrases, elliptical user responses, or contextually dependent, voluntary iput. n CousinUNLX, te

mechanism parses a user command line* into an internal "form" representation having slots and values. It

provides spelling checks and corrections, phrase completion, and interactive dialogue that obtains information

needed to fill the form enough to execute the command. Using information in the environment and the form

template, the system dynamically creates dialogue messages to fit the situation [Hayes 85].

Cousin-Spice uses the parsing, spelling checks, and completion, and a similar internal environment

representation, but replaces the dialogue with interaction on a graphical form. Defaults, required parameters,

etc., are shown in the forms, and users interact by manipulating the objects (buttons, menus, etc.) and values

in the forms. Highlighting and locking show omissions or invalid information. By making manipulations
"niodeless," the user can restart or switch tasks easily at any time. For example, while in the middle of

specifing a delete operation, the user could request to look at the files in a different format or order. He

could even look at different files or change to a rename command. In Cousin-Spice the context mechanism

interprets the user's initial input, but all further interaction and manipulations are in the form and not by

natural language.

In order to facilitate efficient and natural information transfer, we designed the Cousin-Spice system to

recognize commnon command sequences by macro-level commands. The system provides appropriate assis-

tance to the user in executing such sequences. Users are able to define their own sequences for repeated use.

We also made Cousin capable of multiple-levels of command interaction. Thus users see the same style of

interaction with all application packages [Hayes 83a].

7.2. Robust, Flexible Parsing

Users of natural language interfaces seldom observe all the grammatical niceties that schoolteachers insist

upon. Nor do users, concentrating on the underlying task, spell out all the implicit aspects to language

communication. After all, humans do a fine job at filling in contextual information, and can comprehend
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semantically well-formed but syntactically deviant language. Why should not our machines behave similarly?

Therefore, our research strives to make machine interfaces equally resilient to variability and minor in-

accuracies in the communication medium. To this end, we developed a set of flexible parsers of increasing

sophistication, starting from FlexP, and CASPAR to the more recent DYPAR and MULTIPAR systems.

In 1983 we completed DYPAR-I, the first multbisrategy natural language parser that unifies syntactic,

semantic, and pragmatic constraints, and is capable of ellipsis and anaphora resolution. The DYPAR family of

parsers (now through DYPAR-V) have been distributed to hundreds of sites internationally (academic, govern-

ment and business) and serve as a basis both for academic research projects and potential industrial applica-

tions.

Subsequently, we developed the DYPAR line through DYPAR-V, each increasing the sophistication of the

former systems, and all exploiting the new case-frame instantiation technology that is proving far superior and

more robust than the earlier ATN-based technology. DYPAR-IV and DYPAR-V have been used successfully in

building Xcalibur1, a multi-function natural language interface to expert systems and data bases, and

MedSort2, a system that extracts indexing information by parsing titles of large numbers of medical texts.

7.3. Cooperative Error-correction

The thrust of our research in this area was based on a conviction, derived from experience with our current

system, that efficient error correction requires not only a high degree of interaction, but also error detection,

error correction, and ambiguity recognition techniques tailored to the specific error types that can occur. This

conviction shifted our emphasis toward more specific techniques for dealing with errors, particularly errors

associated with the language and concepts commonly found in the more restricted command interaction

domain.

We developed construction-specific, flexible parsing techniques based on our general techniques for

flexible parsing. These specific techniques allow us to exploit the different roles and ease of recognition of the

various constituents of each type of construction in the languages we will deal with. For example, if the

arguments to a command (cases of a verb) are flagged by keywords (prepositions), strategies for dealing with

grammatically deviant uses of that command (verb phrase) can make use of the fact that the keywords are

much easier to recognize than the parameters (deep cases) they mark. Keywords, for instance, can be scanned

to "realign" a parse thrown off by missing or extraneous constituents. We also determined the specific types

1Xcalibur was a DEC-sponsored project

2MedSorn was an NIH-spnored project
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of ambiguity that each construction cause, developed formalisms for representing each of these ambiguities

without duplicating unambiguous constituents, and ensured that our construction-spccific parsing techniques

can make use of these representations to report ambiguities. In addition, we developed methods for the

system to ask intelligently directed questions to resolve ambiguities thus represented, and to understand

appropriately economical replies from the user [Hayes 82a]. We used these parsing techniques for the initial

input in Cousin-Spice and used them extensively in Cousin-UNIX.

At the lexical level, we integrated the spelling correction techniques already developed with techniques for

dealing with abbreviations, inflections, and unknown proper names (of files, other users, etc.). We also fully

integrated all aspects of parsing with other parts of the system, so that, for instance, spelling correction will

interact intelligently with the semantic tests of command checking.

A command-checking mechanism common to both Cousin-Spice and Cousin-UNIX in now in place. It

deals with parameter correctness, default provisions, parameter ambiguity resolution, etc. Cousin-Spice is

broken into two major components, the Form-Manager and the Form-Editor. The Form-Manager embodies

most of the facilities in Cousin-UNix, such as the checking, dealing with ambiguities, and parsing. The

Form-Editor handles the interaction between the user and the Manager by means of a graphical display of the

form kept in the Manager and an editor which allows the user to modify that form [Hayes 84]. The low-level

mechanisms are very similar in both Cousin-UNIX and Cousin-Spice.

We investigated ways of displaying error messages from subsystems invoked by Cousin. Initially, little

processing was performed on these messages, but as the system implementation progressed, we devised

methods of relating errors much more closely to the context of the preceding interaction with the interface

[Hayes 83a].

Most of the error messages and subsequent dialogue with the user, which is present in Cousin-UNIX, is not

needed in Cousin-Spice. Whereas, in Cousin-UNLX, the state of the interaction is kept internally and made

available to the user by a dialogue, in Cousin-Spice, virtually the entire state is explicitly shown to the user.

Errors are obvious to the user by sight, or in some cases, through the use of menu selection: The user cannot

make a mistake. For example, to list the contents of a directory, using Chili, it would be impossible for the

user to select a non-editing flag since only the valid flags are shown.
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7.4. Media-rich Communication

Interactions restricted to typed commands and character output represent a major source of difficulties
encountered with most current computer systems. Our research in media-rich communications emphasizes
increasing efficiency at the man-machine interface by developing techniques that exploit the capabilities of
high-resolution graphics displays, voice recognition, and pointing devices. 4

For Cousin-Spice, we designed and implemented a graphics support package in Pascal using Spice
Sapphire. This provided powerful facilities for manipulating a high-resolution raster display without intro-
ducing dependencies on display resolution or pixel representation. The package allows concurrent access to a
single display device by multiple processes and provides convenient mechanisms for the allocation of display
resources.

We constructed a set of widely applicable facilities for generating effective displays of information within
the system. The display capabilities include: curve plotting, bar graph generation, and histogram displays.
These utilities are available for use within Cousin-Spice and by applications subsystems to present in for-
mation to the user in an effective manner. We also designed a language for defining data filters. A filter
specifies the mapping from an internal data representation to the graphics display. Multiple filters allow the
same internal information to be presented to the user in different ways.

CUT researchers designed Cousin-Spice's forms and menus; they specified the display format, type, and
(optionally) default value for each field. At this point, applications designers can interface their subsystems
with Cousin. The user interaction facilities available in the system make extensive use of application-specific
information provided by the tool designer in declarative form [Hayes 83a]. The Form-Editor provides the
display. The SDO Editor and the Layout Editor let the application programmer describe an application and
how it should be displayed to the user. Another program generates "help" files from application descriptions.
Cousin-uNix has a similar program.

7.5. Integrating Speech and Natural Language
The successful integration of speech recognition and natural language processing technologies promises -

substantial beneft but poses some serious challenges. The integration problems require a computational
solution in which the natural language component is based on robust case-frame analysis and island-growing
techniques. We based our approach on the best aspects Of DYPAR and MULTIPAR, our earlier natural language

systems which are superior to methods in which the natural language component is based on transition
networks (e.g. ATNs).
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in 1981 we designed and implemented a speech recognition system integrated with a mail system. The

system allowed a user to read, generate, and send messages, controlling the process and receiving instructions

by voice. The voice message system used the Lincoln Lab LPC voice encoder for input and output and

employed a template-based recognizer. The recognizer was partially microcoded on a Perq and had a window-

and menu-based interface (voice substituted for the mouse). Although speed and accuracy allowed the

system to be effectively demonstrated, we believe a higher accuracy than the 6% achieved is necessary to

effectively perform such a task. The system was not extended since it was felt that better recognition al-

gorithms were necessary.

7.6. Explanation

In this area, we are concerned with fulfilling the user's need to know about the system in general: what

commands it will accept and how those commands must be stated (static explanation). Cousin-uNix explains

system requirements (drawn from the tool description) through dialogue with the user [Glasner 81]. Cousin-

Spice automatically generates static explanations through form highlighting [Hayes 82b].

The user will also want information about specific states of the interaction: what the system is currently

doing, why it is doing it, what it expects the user to do, whether certain events have happened, what is the

nature of their outcome. A help system was built for Cousin-Spice which used the context of the current form

to explain the current state of interaction [Hayes 82b],such as listing the fields which are incorrect and what is

.ll wrong with them.
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try again. Different parts of the same interface may use quite different syntax or
conventions for essentially similar functions. The online help, if it exists, may come
in chunks too big to be useful for interactive use, and may be indexed and cross-
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and other problems with interactive interfaces have been discussed at length
numerous authors. In the COUSIN (Cooperative user interface) project at Carnegie-
Mellon University, we are working towards user interfaces that appear more
friendly and supportive to their users, thus reducing frustration and enhancing
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based model of communication, and incorporating error correction and on-line
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interfaces, we are working on interface systems designed to provide interfaces to
many different application systems, as opposed to separate interfaces to individual
applications. A Cousin interface system gets the information it needs to provide
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The integral bit-map displays and considerable computational power of the new
generation of personal workstations offer the possibility of excellent user inter-
faces. Yet this potential is often unfulfilled because of the cost and complexity of
building user interfaces that fully exploit the available resources. A solution to this
problem is to define user interfaces through a language embodying appropriate
interface abstractions. Such interface definitions can be interpreted by a central
interface system to realize an interface that a user can interact with. If the interface
abstractions employed are at a suitably high level, the task of constructing in-
dividual interfaces is much simplified, with the complexities of exploiting sophis-
ticated interface hardware limited to the construction of the central interface sys-
tem.

A specific set of interface abstractions is presented. The abstractions are oriented
around a form-filling metaphor of communication between user and application
program. They are suitable for defining command interfaces for many, but not all,
applications. An attempt is made to delimit their range of applicability.

An interface system that runs on a Perq, a powerful personal workstation, is described.
This interface system can interpret interface definitions expressed in a language
embodying the interface abstractions just mentioned. The result of this inter-
pretation is a graphical interface with many user-friendly features. An example of
an interface description definition and the interface that results from it is given.

[Hayes 85] Hayes, P.J., P.A. Szekely, and R.A. Lerner.
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Cousin.
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User interface management systems (UIMSs) provide user interfaces to application
systems based on an abstract definition of the interface required. This approach
can provide higher-quality interfaces at a lower construction cost. In this paper we
consider three design choices for UIMSs which critically affect the quality of the
user interfaces built with a UIMS, and the cost of constructing the interfaces. The
choices are examined in terms of a general model of a UIMS. They concern the
sharing of control between the UIMS and the application it provides interfaces to,
the level of abstraction in the definition of the sequencing of the dialogue. For
each choice, we argue for a specific alternative. We go on to present Cousin, a
UIMS that provides graphical interfaces for a variety of applications based on
highly abstracted interface definitions. Cousin's design corresponds to the alter-
native we argued for in two out of three cases, and partially satisfies the third. An
interface developed through, and run by Cousin is described in some detail.
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8. Research in Integrated VLSI Systems

Very large scale integration (VLSI) technology promises to profoundly change the face of computing by

providing cheap and massively parallel machines. We face three challenges in realizing this promise: laming

the complexity of designing systems with billions of transistors, understanding how technology affects ar-

chitecture and how architecture changes with technology, and learning how to design highly parallel machines

that make efficient use of hardware resources and integrate them into application systems.

Our activities during the contract period, all motivated by these themes, fall into three general classes:

theory, systems and design tools.

" VLSI Theory-Traditional models of computational complexity are incapable of capturing the
behavior of large VLSI systems. First. new issues arise because of the availability of massive
parallelism, and issues of communication and synchronization become central. Second, new
hardware constraints bring technology issues into greater prominence: a central example is that
although traditional models stress the cost of gates and de-emphasize the cost of interconnection,
exactly the opposite is true for VLSI.

The VLSI theory effort at CMU prior to 1981 pioneered new models of computational complexity
and effective parallel architecture design. This included the formulation of the concept of systolic
algorithms, which allow the creation of very high performance, yet simple to build, VLSI systems.
Since 1981, we have made great progress in understanding the design of systolic algorithms and in
applying theoretical tools to previously ill-formed implementation issues such as wafer scale in-
tegration, problem decomposition for special-purpose processors, and global synchronization.

" VLSI Systems--Beginning in 1981, our VLSI systems work has had two thrusts: developing
parallel architectures for specific application areas, and designing custom chips and integrating
them into realistic working systems. The architecture work stresses the analysis and exploitation
of application and algorithm features to allow the design of highly efficient parallel architectures
whose communication, computation and control resources are closely tailored to the problem.
Our hardware work has concentrated on building our expertise in chip and system design, proving
architectural concepts, and gaining experience that will guide us in further theoretical and prac-
tical work. 

11,

" VLSI Design Tools-For designs of the tremendous complexity provided by VLSI technology to
be feasible, they must be supported by sophisticated computer aided design tools. This is espe-
cially true for special purpose systems, whose design cost represents a large portion of system cost
due to low volume. Our work on design tools, concentrating largely on design validation
problems, has resulted in a number of novel tools and algorithms, both powerful and CPU-
efficient, that have aided our own design work and have been distributed to hundreds of other
sites.

8.1. VLSI Theory

Over the past four years, our VLSI theory efforts have been increasingly guided by our experience in the

design of algorithms, chips, and systems. Accordingly, our results have been oriented more and more toward

using theoretical tools to gain insight into ill-structured real-world problems. Our results fall into three main
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areas:

" Algorithms--We have continued our work on developing individual systolic algorithms and un-
derstanding their propcrtics. We have also worked on algorithms that do not fit neatly into the
systolic framework, but that share similar features.

" Theory of algorithm design-In an effort to provide understanding of and tools for the design of
systolic algorithms, we have developed a number of approaches. We have developed both math-
ematical and intuitive tools for describing and manipulating systolic algorithms.

" Implementation issues--As we and other groups gain experience in VLSI system design, various
implementation issues arise for which theoretical analysis is valuable. We have carried out
theoretical investigations of global synchronization, wafer scale integration and fault tolerance,
and the problems involved in partitioning large problems to run on a fixed-size special purpose
device.

8.1.1. Algorithms

While gaining a greater understanding of the systolic approach to parallel computing and building actual
systolic prototypes, we have designed a large number of individual systolic and near-systolic algorithms.

These include algorithms for the following problems:

* polynomial GCD [Brent 82a, Brent 84a]

* integer GCD [Brent 83a, Brent 84b]

* computational geometry problems [Chazelle 82)

* median and related filtering [Fisher 82a, Oflazer 83]

* dictionary problems [Fisher 84a]

* regular language recognition [Foster 82, Foster 83, Foster 84]

* image convolution [Kung 82a, Kung 83a, Kung 84a]

* computational algebra [Kung 83b]

8.1.2. Theory of algorithm design

Since parallel algorithms are often harder to design, understand, and prove correct than serial algorithms,

the question of formal systems for manipulating systolic algorithms has received much attention. Two key
contributions were made at CMU. Lam and Mostow [Lam 83] have produced a prototype system, based on
program transformation principles, that helps a user transform a serial program into a systolic parallel
program. Kung and Lin [Kung 84b, Kung 83c] have developed an algebra for manipulating and proving

correctness properties of systolic algorithms.
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8.1.3. Implementation issues

An important issue in implementing special-purpose hardware is how to decompose problems that are too

large to be solved in a single pass. Hong and Kung [Hong 81] have developed a model for the 1/O costs of

problem decomposition, based on an abstract pebbling game. Using this formalism, they derived lower

bounds on communication costs depending on algorithm properties. In a more applied vein, Kung and

Yu [Kung 82b) have cxplored some of the practical issues of problem decomposition on a machiine incor-

porating multiple special-purpose devices.

Another implementation issue, and one that assumes increasing importance as systems include more proces-

sors, is synchronization. As systems become more complex, global synchronization by means of a broadcast

clock signal becomes more difficult to implement. Fisher and Kung [Fisher 83aJ have developed a model of

the timc costs of global synchronization, and have derived upper and lower bounds for clocking different

array topologies under different assumptions about clock skew. A typical result is that two-dimensional arrays

are inherently harder to clock than one-dimensional arrays.

A third implementation issue that we have examined is Wafer scale integration of VLSI processor arrays.

Using an entire silicon wafer for a system provides obvious density advantages, but necessitates the use r'f

redundancy and fault tolerant design to achieve acceptable yield. Kung and Lam [Kung 83d, Kung 844l have

shown how the delays introduced by faulty elements of an array can be "hidden" in the normal timing

scheme of a systolic array, and have performed simulation studies producing wafer yield estimates for varying

defect densities.

8.2. VLSI Systems

Our VLSI systems work continues to emphasize the development of task-specific architectures and chips

that serve as system building blocks. The areas we have developed architectures in include database manage-

ment, production systems for artificial intelligence, speech understanding, and systolic processing. We have

developed two building block chips for systolic arrays, along with a multi-purpose board level systolic proces-

sor. We have also built chips for a number of specific applications, including move generation for a high-

performance chess playing machine. We highlight a few examples below.

8.2.1. Architectures

During the 1981-84 period, our work on implementing systolic arrays shifted from single-purpose

prototypes to programmable architectures capable of serving many applications. Our first such endeavor was

the design, implementation, and system integration of the programmable systolic chip described in 8.2.2. This

guided the design of a successor, the Warp processor (which has subsequently been constructed under the
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auspices of the DARPA Strategic Computing program) and a related interconnection chip, the UNC(described

below).

In collaboration with the artificial intelligence group at CMU, we have been pursuing the design of efficient

parallel architectures for interpreting production systems. We began by analyzing a set of existing production

systems and evaluating the potential speedup available through parallel implementation. This study [Gupta

84a] concluded that massive parallelism would not be helpful in executing OPS5-like production systems.

Using these results, two parallel architectures have been developed: Gupta [Gupta 84b] has proposed a

bus-based architecture, and Oflazer [Oflazer 84] has proposed a tree-structured architecture. Further studies

continue under the DARPA Strategic Computing project.

Another application we have examined is parallel processing of large databases. We have carried out three

studies with varying emphasis. Song [Song 81a] proposed a tree-structured machine for backend database

processing and studied its properties. Lehman [Lehman 81) developed a systolic system for database trans-

action processing. Oflazer carried out a design study for a VLSI reimplementation of an existing parallel

database machine.

We have produced and evaluated various designs of custom systems suitable for beam search algorithms.

After recognizing that no programmable machine could attain the desired cost/performance ratio and that

many components of beam search (e.g. the heuristic pruning function) should be programmable, we decided

to build a set of tools that would help automate the design of custom systems for beam search. We used a

self-timed architecture which freed us from the requirement of finely tuned hardware because it could

correctly interconnect components of variable speed. We successfully designed, fabricated, and tested a num-

ber of basic components: latches, adders, and multipliers. We designed a set of tools that translates an

algorithm's graphical representation into a wirelist of basic components. Although the graphical description

proved inconvenient, we identified a number of optimizations of the algorithm for silicon implementation.

Our initial desire was to build enough tools to be able to close the design loop only after having a realistic

layout of a chip, but we could not build a satisfactory layout estimation tool because of the complexity and

manpower requirements of the task. We did design and build a time analyzer which could identify the delay

between the input and different parts of the design when the system was in steady state. This tool allowed us

to identify the approximate performance of the design and to place pipeline latches in the best way.
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8.2.2. Chips

Our first foray into the construction of programmable systolic arrays as well as the design of complex chips

was the programmable systolic chip

(PSC) [Fisher 84b, Kung 83e]. Conceived at the end of 1981 and reduced to silicor a year later, the PSC is a

single-chip microprocessor designed to be used in groups to implement high-performance systolic arrays. Its

novel structure is tailored to the computation, communication and control requirements of systolic al-

gorithms. The PSC was fabricated hy MOSIS, and an image processing array built from PSCs has been

demonstrated.

In conjunction with the design of the Warp processor, a board-level follow-on to the PSC, Hsu, Kung and

Sussman have designed LNC [Hsu 841, a high-performance interconnection chip. A LINC (Link and Inter-

connect Chip) includes a crossbar and delay elements, and serves as the communication medium among the

functional elements of a single high-performance processing element. The uNC is being fabricated by

General Electric in 1.2 micron CMOS.

An especially successful chip has been designed by Ebeling [Ebeling 84a] for use in a chess machine. The

chip computes, for a given game position and given square of a chess board, all possible legal moves to that

square. Thus 64 chips can be used in parallel to generate all possible moves from any one position. The chip

also contains support for the usual search algorithms used in game playing. Ebeling and Slomer have

constructed a special-purpose machine incorporating 64 custom chips and a bit-slice controller. The resulting

system has attained the highest rating ever held by a chess program, and recently won the 1985 ACM

computer chess championship.

Foster developed a series of chips implementing regular expression matching algorithms, furthering his and

Kung's work on pattern recognition algorithms. The particularly interesting feature of these chips is that

rather than being specialized for particular expressions at the mask level, they were designed for customiza-

tion by laser disconnection of metal wires [Foster 83, Foster 82]. The chips were fabricated by MOSiS, and

successfully programmed and tested in collaboration with MIT Lincoln Laboratories.

Raibert and his colleagues have exploited the physical, as well as the electronic, properties of silicon chips to

build a series of novel tactile sensor chips [Raibert 82a, Raibert 82b]. The basic idea is to leave windows in the

chip's protective glass coating, allowing electrical contact with metal wires on the chip, and to cover the chip

with a conductive elastomer. Different pressures on the chip surface then result in different current flows

among the electrical nodes on the chip. On-chip processing aids in the analysis of the pressure data thus

obtained.
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A more applied example of our chip-building experiments was the design and usC of a custom chip 1br

testing custom chips. Ebeling and Frank designed a chip for sending and receiving large test vectors under
microprocessor control, and thcy and Anantharaman constructed a tester using a group of mosis chips. The

tester has been in use for several years and has been used on many later designs.

8.3. VLSI Design Tools

We have centered our VLSI design tool work on the themes of analyzing the needs of designers, and then

analyzing the properties of typical design databases to determine efficient algorithms. This approach has

resulted in a number of tools that give great leverage in the design of complex systems, yet run with great
resource efficiency. In particular, we have implemented and distributed a pair of circuit extractors, one flat
and one hierarchical, a circuit comparator, and a tool that evaluates the yield characteristics of a layout under
various defect density assumptions. To support our own system building efforts, we have also constructed a

powerful circuit board design system and a suite of chip-testing software.

One of the basic steps in current VLSI design practice is to extract an abstract circuit representation of a

given chip layout. Gupta's ACE [Gupta 83aJ, the first of two high performance circuit extractors written at
CMU, has been distributed to hundreds of academic and industrial sites, and is one of the fastest "flat"

extractors in existence. Following ACE'sSsuccess, Gupta and Hon [Gupta 83b, Hon 831 collaborated to

produce a second extractor, HMX, that exploits the hierarchical structure of a VLSI layout to reduce process-

ing time.

A particularly helpful way to use the extracted layout is to compare it with a circuit specification generated

either by a netlist language or a schematic capture system. Ebeling designed and implemented a hashin-
based graph matching algorithm that performs this task very rapidly. His program Gemini [Ebeling 83], is in

use at a large number of labs outside CMU. Locally, its use has measurably improved our chip design

productivity by eliminating a major class of layout errors

Another facet of layout analysis is yield estimation. Walker's VLAsic [Walker 83a] is an integrated circuit

yield simulator that models the functional yield loss caused by local process faults such as oxide pinholes.

extra and missing material, and junction leakage. The simulator uses a Monte Carlo process of placing defects

on a layout according to the statistics observed in the fabrication line and analyzing them to determine what

circuit faults have occurred. VLASic can function as a component in application systems, such as a statistica

design rule developer, an inductive fault analyzer, or a redundancy analyzer. The Semiconductor Research

Corporation also supports this work.

We have also developed two tools targeted more for practical utility than for research value. The first is a
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printed circuit board design package that guarantces correctness of connectivity and design rules and is also

capaible of automatic routing. 'Ibe second is a %oftwarc package [I~bcling 84b] for our custom chip-based chip

tester. Both tools have seen heavy use in our experimnental work.
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front-end analyzes the CIF description of a layout and partitions it into a set of
non-overlapping rectangular regions called windows, redundant windows are
recognized and are extracted only once. The back-end analyzes each unique win-
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in DADO is not very effective for executing OPSS-like production systems. The
reasons are: (1) actions of productions in OPS5 programs do not have global
affects, but only affect a small number of other productions, and (2) large-scale
parallelism almost always implies that the individual processing elements are weak.
Since only a small number of productions are affected every cycle, only a few of
the large number of processing elements perform useful work. Furthermore, since
the individual processing elements are weak, the performance is worse than if a
small number of powerful processors are used. The tree-structured topology of the
DADO architecture is not found to be a bottleneck.

[Haynes 82] Haynes, L.S., R.L. Lau, D.P. Siewiorek and D. W. Mizell.
A Survey of Highly Parallel Computing.
Computerl5(1), January. 1982.

[Hon 83] Hon, R.W.
The Hierarchical Analysis of VLSI Designs.
Technical Report CMU-CS-83-170, Carnegie Mellon University Computer Science Depart-

ment.
December, 1983.

As the complexity of integrated circuit designs increases, the task of verifying that the
masks are correct becomes very time consuming. Fortunately, the wide acceptance
of hierarchical mask description formats allows the development of methods that
take advantage of the structure in such descriptions. These hierarchical processing
methods are potentially much faster (for actual designs) than methods that ignore
hierarchy.

This thesis explores one method of hierarchically processing integrated circuit artwork.
The method has the following properties:

1. The same method is applicable to a range of artwork analysis tasks, for example
plotting, circuit extraction, and design-rule checking.

2. The method operates on mask descriptions, and can directly replace existing slower
techniques.

3. There are no restrictions on the type of designs that can be analyzed, so integrated
circuits created using any number of design systems can be checked.

Informal arguments for the method's correctness, performance results, and an overview
of where this type of design aid fits in the spectrum of VLSI tools are given.

[Hong 81] Hong, J. W. and H.T. Kung.
I/O Complexity: The Red-Blue Pebble Game.
In Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computin& Pages

326-333. ACM SIGACT, May, 1981.
Also available as CMU-CSD technical report CMU-CS-81-120.

In this paper, the red-blue pebble game is proposed to model the input-output com-
plexity of algorithms. Using the pebble game formulation, a number of lower
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bound results for the 1/0 requirement are proven. For example, it is shown that to
perform the n-point FFT (or the ordinary nxn matrix multiplication algorithm)
with a device of O(S) memory, at least O(n log n/log S) (or O0nlV3'),
respectively) time is needed for the I/O. Similar results are obtained for algorithms
for several other problems. All of the lower bounds presented are the best possible
in the sense that they are achievable by certain decomposition schemes.

The results in this paper provide insight into the difficult task of balancing I/O and
computation in special-purpose system design. For example, for the n-point FFt,
the I/O lower bound implies that an S-point device achieving a speed-up ratio
O(logS) over the conventional O(n log n) implementation is all that one can hope
for.

[Hsu 84] Hsu, F.H., H.T. Kung, T. Nishizawa, and A. Sussman.
LINC: The Link and Inferconnection Chip.
Technical Report CMU-CS-84-159, Carnegie Mellon University Computer Science Depart-

ment
May, 1984.

The link and interconnection chip (LINC) is a custom chip whose function is to serve as
an efficient link between system functional modules, such as arithmetic units,
register files, and 1/0 ports.

LINC has 4-bit datapaths consisting of an 8x8 crossbar interconnection, a FIFO or
programmable delay for each of its inputs, and a pipeline register file for each of its
outputs. Using pre-stored control patterns, LINC can configure its interconnection
and delays on-the-fly, while running. Therefore the usual functions of busses and
register files can be realized with this single chip.

LINC can be used in a bit-sliced fashion to form interconnections with datapaths wider
than 4 bits. Moreover, by tri-stating the proper data output pins, multiple copies of
LINC can form crossbar interconnections larger than 8x8.

Operating at the target cycle time of 100 ns, LINC makes it possible to implement a
variety of high-performance processing elements with much reduced package
counts. This reduction of chip counts is especially significant for cost-effective
implementations of those multiprocessors such as systolic arrays which call for
large numbers of processing elements.

This paper gives the architectural specification of LINC, and justifies the specification
by some application examples.

[Kung 81al Kung, H.T., L.M. Ruane, and D.W.L. Yen.
A Two-Level Pipelined Systolic Array for Convolutions,
In Kung, H.T., G.L. Steele, Jr., and R.F. Sproull, VLSI Systems and Computations. Com-

puter Science Press, Inc., 1981.
Pipelining computations over a large array of cells has been an important feature of

systolic arrays. To achieve even higher degrees of concurrency, it is desirable to
have cells of a systolic array themselves be pipelined as well. The resulting two-
level pipelined systolic array would enjoy in principle a k-fold increase in its
throughput, where k is the ratio of the time to perform the entire cell computation
over that to perform just one of its pipeline stages. This paper describes such a
two-level pipelined systolic array that is capable of performing convolutions of any
dimension. The designs take full advantages of the pipelining assumed to be
available at each cell.

Multi-stage pipelined arithmetic units built from discrete components have been used
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in most of high-pcrformance computers. With the advent of VLSI. these pipclined
units will surcly be implemented in one or few chips. This paper shows for the first
time how a large number of these pipelined chips can be cfficiendy combined to
form a systolic array.

[Kung 81b] Kung, H.T.
Design of Algorithms for Direct VLSI Implementation,
In Cavalli, E., Design of Numerical Algorithms for Parallel Processing. Academic Press, 1981.

[Kung 81c] Kung, H.T., G.L. Steele Jr., and R.F. Sproull (eds.).
VLSI Systems and Computations
Computer Science Press, Inc., Maryland, 1981.

[Kung 81d] Kung, H.T.
Use of VLSI in Algebraic Computation: Some Suggestions.
In Wang, P.S., Editor, Proceedings of 1981 ACM Symposium on Symbolic and Algebraic

Computation, Pages 218-222. ACM SIGSAM, August, 1981.

[Kung 81e] Kung, H.T. and R.L. Picard.
Hardware Pipelines for Multi-Dimensional Convolution and Resampling.
In Proceedings of the 1981 IEEE Computer Society Workshop on Computer Architecture for

Pattern Analysis and Image Database Management, Pages 237-278. IEEE, November,
1981.

A later version appears as 'One-Dimensional Systolic Arrays for Multidimensional Convolu-
tion and Resampling,' 1984.

[Kung 82a] Kung, H.T. and S.W. Song.
A Systolic 2-D Convolution Chip,
In Preston, K., Jr. and L. Uhr, Multicomputers and Image Processing: Algorithms and

Programs, Pages 373-384. Academic Press 1982.
Also available as CMU-CSD technical report CMU-CS-81-110.

This paper describes a chip for performing the 2-D (two-dimensional) convolution in
signal and image processing. The chip, based on a systolic design, consists of essen-
tially only one type of simple cells, which are mesh-interconnected in a regular and
modular way, and achieves high performance through extensive concurrent and
pipelined use of these cells. Denoting by u the cycle time of the basic cell, the chip
allows convolvin a kxk window with an nxn image in O(n 2u/k) time, using a total
of k3 basic cells. The total number of cells is optimal in the sense that the usual
sequential algorithm takes O(n 2k2u)> time. Furthermore, because of the
modularity of the design, the number of cells used by the chip can be easily
adjusted to achieve any desirable balance between I/O and computation speeds.

[Kung 82b] Kung, H.T. and S.Q. Yu.
Integrating High-Performance Special-Purpose Devices into a System.
In Notes for Symposium on Vector and Parallel Processors, IBM Italy Scientific Center,

March, 1982.
See Kung and Yu, May 1982, SPIE Vol. 341 Real Time Signal Processing V, for abstract.

[Kung 82c] Kung, H.T.
Why Systolic Architectures?
Computer MagazinelS(l):37-46, January, 1982.
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(Kung 82d] Kung, H:'. and S.Q. Yu.
Integrating Ifigh-Pcrformance Special-Purpose Devices into a System.
In SPIE Vol. 341 Real rime Signal Processing V(1982). SPIF. May. 1982.

An emerging belief among many researchers is that a significant portion of the next
generation of high performance computers will be based on architectures capable
of exploiting very large scale integration (VLSI) modules. In particular, it is
desirable to have a compact system that can be plugged in with interchangeable
high perfbrmance modules to fit various application requirements. The system can
be an efficient signal processor when special purpose signal processing modules are
used; it can also be an efficient database machine when the modules are replaced
with data processing modules. This paper discusses some of the issues in the design
of such a system, and describes the framework of a system that is being developed
atCMU.

[Kung 83a] Kung, H.T., L.M. Ruane, and D.W.L. Yen.
Two-Level Pipelined Systolic Array for Multidimensional Convolution.
Image and Vision Computingl(1):30-36, February, 1983.
Also available as CMU-CSD technical report CMU-CS-83-103.

This paper describes a systolic array for the computation of n-dimensional (nD) con-
volutions for any positive integer n. Systolic systems usually achieve high perfor-
mance by allowing computations to be pipelined over a large array of processing
elements. To achieve even higher performance, the systolic array described in this
paper uses a second level of pipelining by allowing the processing elements them-
selves to be pipelined to an arbitrary degree.

[Kung 83b] Kung, H.T.
Two-Level Pipelined Systolic Arrays for Matrix Manipulation, Polynomial Evaluation, and

Discrete Fourier Transfonn.
In Proceeding of the Workshop on Dynamical Behavior of Automata: Theory and

Application. Academic Press, September, 1983.
In recent years many systolic algorithms have been designed and several prototypes of

systolic array processors have been constructed. Major efforts have now started in
attempting to use systolic array processors in large, real-life applications. Practical
issues on the implementation of systolic array processors have begun to receive
substantial attention.

One of the important implementation issues relates to the efficient use of pipelined
functional units in the implementation of systolic cells. For example, high through-
put floating-point multiplier and adder circuits typically employ three or more
pipeline stages. Systolic cells implemented using these units form a second level of
pipelining in the pipelined organization of systolic arrays. This additional level of
pipelining can greatly increase the system throughput

(Kung 83c] Kung, H.T. and W.T. Lin.
An Algebra for VLSI Algorithm Design.
Technical Report CMU-CS-84-100, Carnegie Mellon University Computer Science Depart-

ment,
ApriL 1983.

Algoritum designed for VLSI implementation are usually parallel and two-
dimensional in the sense that many processing elements laid out on a silicon mUr-
face can operate simultaneously. These algorithms have been typically described
by graphs or networks where nodes represent processing elements or registers and
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edges represent wires. Although for many purposes these traditional represen-
tations are adequate for specifying VLSI algorithms. they are not suited for
manipulating algorithm designs. In this paper an algebraic representation, together
with a semantics, is proposed for VLSI algorithm designs. By algebraic transfor-
mations analogous to some typically used in linear algebra, alternative but equiv-
alent designs satisfying desirable properties such as locality and regularity in data
communication can be derived. 'Ihis paper describes this powerful algebra for
manipulating designs, and provides a mathematical foundation for the algebraic
transformations. The algebraic framework is more suitable for supporting formal
manipulation of designs than the network or graph-theory models, especially for
complex designs. As an application of the proposed algebra, the paper
demonstrates its use in the design and verification of systolic algorithms.

[Kung 83d] Kung, H.T. and M. Lam.
Fault-Tolerance and Two-L evel Pipelining in VLSI Systolic Arrays.
Technical Report CM U-CS-83-166, Carnegie Mellon University Computer Science Depart-

ment,
November, 1983.

This paper addresses two important issues in systolic designs: fault-tolerance and two-
level pipelining. The proposed 'systolic' fault-tolerant scheme maintains the
original data flow pattern by bypassing defective cells with a few registers. As a
result, many of the desirable properties of systolic arrays (such as local and regular
communication between cells) are preserved. Two-level pipelining uses pipelined
units to increase the overall system. We show that both of these problems can be
reduced to the same mathematical problem of incorporating extra delays on cer-
tain data paths in originally correct systolic designs. We introduce the mathemati-
cal notion of a cut which enables us to handle this problem effectively.

The results obtained are encouraging. When delays are added to systolic arrays without
feedback cycles, the arrays can tolerate large numbers of failures (with the addition
of very little hardware) while maintaining the original throughput. However, ad-
ding delays to systolic arrays with cycles typically induces a significant decrease in
throughput. In response to this, we have derived a new class of systolic algorithms
to cycle the data around a ring of processing cells. The systolic ring architecture's
performance degrades gracefully as cells fail.

[Kung 83e] Kung, H.T.
A High Performance Microprocessor Chip to Be Used in Groups of Hundreds.
In Proceedings of IEEE EASCON '83, Pages 251-258. IEEE, September, 1983.

[Kung 83nJ Kung, H.T. and W.T. Lin.
An Algebra for VLSI Computation,
In Birkhoff, G. and A. Schoenstadt, Elliptic Problem Solvers II. Academic Press, Orlando,

1983.

[Kung 83g] Kung, H.T.
VLSI, Computer Science, and Synergetic Research.
In Proceedings of the ACM llth Annual Computer Science Conference, Pages 17-19.

February, 193.
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(Kung 83h] Kung. H.T.
On the Implementation and Use of Systolic Array Processors.
In Proceedings of International Conference on Computer Design: VLSI in Computers, Pages

370-373. IEEE. November. 1983.
In recent years many systolic algorithms have been designed and several prototypes of

systolic array hardware have been constructed. Major efforts now started in at-
tempting to use systolic array processors in large, real-life applications; practical
issues on the implementation and use of systolic array processors in systems have
begun to receive substantial attention. This paper first examines various im-
plementation issues and alternatives, and then identifies some work that is essential
to the eventual, wide use of systolic array processors.

[Kung 83i] Kung, H.T, and S.Q. Yu.
Integrating High-Performance Special-Purpose Devices into a System,
In Randel, B. and Treleaven, P.C., VLSI Architecture, Pages 205-211. Prentice/Hall Inter-

national, 1983.
An emerging belief among many researchers is that a significant portion of the next

generation of high performance computers will be based on architectures capable
of exploiting very large scale integration (VLSI) modules. In particular, it is
desirable to have a compact system that can be plugged in with interchangeable
high performance modules to fit various application requirements. The system can
be an efficient signal processor when special purpose signal processing modules are
used; it can also be an efficient database machine when the modules are replaced
with data processing modules. This paper discusses some of the issues in the design
of such a system, and describes the framework of a system that is being developed
at CMU.

[Kung 84a] Kung. H.T. and R.L. Picard.
One-Dimensional Systolic Arrays for Multidimensional Convolution and Resampling,
In Fu, King-sun, VLSIfor Pattern Recognition and Image Processing, Pages 9-24. Springer-

Verlag, 1984.
We present one-dimensional systolic arrays for performing two- or higher-dimensional

convolution and resampling. These one-dimensional arrays are characterized by
the fact that their 1/O bandwidth requirement is independent of the size of the
convolution kernal. This contrasts with alternate two-dimensional array solutions,
for which the I/O bandwidth must increase as the kernal size increases. The
proposed architecture is ideal for VLSI implementation - and arbitrarily large
kernel can be handled by simply extending the linear systolic array with simple
processors of the same type, so that one processor corresponds to each kernel
element.

[Kung 84b] Kung, H.T. and W.T. Lin.
An Algebra for Systolic Computation,
In Birkhoff, G. and A. Schoenstadt, Elliptic Problem Solvers II, Pages 141-160. Academic

Press, 1984.
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[Kung 84c] Kung, H.T. and M.S. Lam.
Fault-Tolcrance and Two-Level Pipelining in VLSI Systolic Arrays.
In Proceedings of Conference on Advanced Research in VLSI, MIT, January, 1984.
Also available as CMU-CSD technical report CMU-CS-83-166. A revised version appears

in Journal of Parallel and Distributed Computing, vol. 1, 1984. For abstract, see Kung 84
"Wafer-Scale Integration and Two-Level Pipelined Implementation of Systolic Arrays.".

[Kung 84d] Kung, H.T.
Systolic Algorithms and Their Implementation.
In Proceedings of the 17th Hawaii International Conference on System Sciences, Pages 5-11.

January, 1984.

[Kung 84e] Kung, H.T. and M. Lam.
Wafer-Scale Integration and Two-Level Pipelined Implementation of Systolic Arrays.
Journal of Parallel and Distributed Computingl:32-63, 1984.
A preliminary vc sion appeared in Proceedings of the Conference on Advanced Research in

VLSI, MIT, January 1984.
Two important issues in systolic array designs are addressed: How is fault tolerance

provided in systolic arrays to enhance the yield of wafer-scale integration im-
plementations? And, how are efficient systolic arrays with two levels of pipelining
designed? (The first level refers to the pipelined organization of the array at the
cellular level, and the second refers to the pipelined functional units inside the
cells.) The fault-tolerant scheme proposed replaces defective cells with clocked
delays. The mathematical notion of a cut is introduced to solve the problem of how
to allow for the extra delays in the data paths while preserving the correctness of
the original systolic array designs.

The results obtained by applying these techniques are encouraging. When applied to
systolic arrays without feedback cycles, the arrays can tolerate large numbers of
failures while maintaining the original throughput. Furthermore, by adding a
small number of delay registers, all the pipeline stages in the cells can be kept fully
utilized. However, adding delays to systolic arrays with cycles typically induces a
significant decrease in throughput.

In response to this, a new class of systolic algorithms has been derived in which the data
cycle around a ring of processing cells. The systolic ring architecture has the
property that its performance degrades gracefully as cells fail. Use of the cut theory
and ring architectures for arrays with feedback gives effective fault-tolerant and
two-level pipelining schemes for most systolic arrays. As a side effect of developing
the ring architecture approach, several new systolic algorithms have been derived.

[Lan 831 Lam, M. and J. Mostow.
A Transformational Model of VLSI Systolic Design.
In Proceedings of the 6th International Symposium on Computer Hardware Description Lan-

guages and their Applications, Pages 65-77. IFIP, May, 1983.
A later version appears in Computer, Feb. 1985.

This paper presents a transformational model and convenient notation for systolic
design. The model is implemented in a program that accepts a software algorithm,
along with a bit of advice, and applies a series of transformations to produce a
functional-level circuit description. The simplicity of the program and the clarity
of the notation appear largely due to two factors:

1. The representation of a design is factored into a structure description, which
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specifics the hardware components and their interconnections, and a driver,
which relates the input and output data streams for the structure to the
variables used in the algorithm.

2. The notation includes constructs that make it easy to represent timing and
communication schemes common in systolic design.

[Lehman 811 Lehman, P.L.
A Systolic (VLSI) Array for Processing Simple Relational Queries.
In VLSI Systems and Computations, Pages 285-295. Computer Science Press, Inc., Oct.

1981.
This paper discusses the use of systolic arrays (a conceptual and design tool for VLSI

systems) to produce VLSI capable of processing simple relational database queries,
which are by far the most frequently executed queries in practical large database
systems. We will be concerned with the exploitation of VLSI technology to process
"simple" relational queries very rapidly the design of an array for this task is
described below. The systolic properties of the array design are considered, and are
shown to have analogs in the domain of databases by using the systolic properties
to prove certain consistency and scheduling complexity properties of all trans-
actions executed by the array (hereinafter called the simple query array, or SQA).
The SQA is intended for use as an integral part of a systolic database machine,
which would handle very large databases and is expected to have a high perfor-
mance gain over conventional database systems. The machine should also compare
quite favorably with other database machine designs, especially when use for
databases with frequent simple queries, ie. those databases used by most commer-
cial applications.

[Leiserson 81) Leiserson, C.E and J.B. Saxe.
Optimizing Synchronous Systems.
In Proceedings of the 22nd Annual Symposium on Foundations of Computer Science, Pages

23-36. IEEE Computer Society, October, 1981.

(Leiserson 83a] Leiserson, CE.
Area-Efficient VLSI Computation.
PhD thesis, Carnegie-Mellon University, 1983.

[Leiserson 83b] Leiserson, C.E. and J.B. Saxe.
Optimizing Synchronous Systems.
Journal of VLSI and Computer Systemsl(1):41-68, 1983.

11-uk 84a] Luk, W.K.
ROUTER: A Set of Routing Tools for VLSI Layout.
Technical Report VLSI Document V155, Carnegie Mellon University Computer Science

Department,
April, 1984.

(Luk 84b] Luk, W.T.
A Greedy Switch-box Router.
Technical Report CMU-CS-84-148, Carnegie Mellon University Computer Science Depart-

ment
May, 1984.

We show how to extend the greedy channel router of Rivest and Fiduccia into an

8-24



RIS-EARCII IN INTEGRATID VISI SYSTEMS

efficient switch-box router. Terminals are on the boundary of a rectangular region,
and the router uses two orthogonal layers of wires to generate the solution. The
router always succceds in finding a solution by inserting sufficicnt horizontal and
vertical tracks in case of failure. The result is generated through a single scan of the
routing region. The implemcnted router is designed for assembling custom VLSI

design, it works in parallel with other tools such as a layout editor which serves as
an interface. The router output is in CIF.

[Luk 84c] Luk, W.K. and J.E. Vuillemin.
Recursive Implementation of Optimal Time VLSI Integer Multipliers,
Advances in Computing Research. JAI Press, Inc., 1984.

[Oflazer 831 Oflazer, K.
Design and Implementation of a Single-Chip 1-D Median Filter.
In IEEE Transactions on Acoustics Speech, and Signal Processing, IEEE, October, 1983.
Also available as CMU-CSD techreport CMU-CS-82-115.

The design and implementation of a VLSI chip for the one-dimensional median filter-
ing operation is presented. The device is designed to operate on 8-bit sample
sequences with a window size of five samples. Extensive pipelining and employ-
ment of systolic data-flow concepts at the bit level enable the chip to filter at rates
up to ten megasamples per second. A configuration for using the chip for ap-
proximate two- dimensional median filtering is also presented.

[Oflazer 841 Oflazer, K.
Partitioning in Parallel Processing of Production Systems.
In Keller, R., Editor, Proceedings of the International Conference on Parallel Processing,

ACM, IEEE, and Department of Computer and Information Science, Ohio State
University at Columbus, August. 1984.
The results of an analysis of production level parallelism in OPS5 production system

programs is presented. The results indicate that contrary to most expectations, the ,-

effective production level parallelism in this class of production systems considered
is very low compared to the number of productions in these systems. Hence,
significant speed-ups in executing such systems would be obtained by combining
the limited parallelism with fast hardware and overlapped processing; rather than
by massively parallel approaches employing simple processors. Later, the problem
of partitioning productions in a production system to a small number of processors
in a parallel processing system is presented. The goal of partitioning is to improve
the speed-up provided by the limited parallelism by finding assignments of
productions to processors that achieve a more balanced load for each processor.

[Ostdund 82] Ostlund, N., P. Hibbard, and R. Whiteside.
A Case Study in the Application of a Tightly Coupled Multiprocessor to Scientific Com-

putations,
In Alder, B., S. Fernbach, and M. Rotenberg, Parallel Computations. Academic Press, Inc.,

1982.

(Raibert 82a] Raibert, M.H. and J.E. Tanner.
A VLSI Tactile Array Sensor.
In Proceedings International Symposium on Industrial Robots, 1982.

A new type of tactile sensor is presented that was designed to give a robot manipulation
system information about contact between its hand and objects in the environ-
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ment. We describe a device that is at once a special purpose parallel computer and
a high resotution tactile sensing array. We have replaced the passive substrate of
earlier tactile sensors with a custom designed nMOS VLSI device that handles
transduction, computing and communication. Forces are transduced using a stan-
dard conductive plastic technique. An array of processors, the sensor performs
filtering and simple convolution operations on the tactile image. Data are then
read from the array serially and transmitted to a control computer. A 6x3 array
with 1 mm square tactile cells has been fabricated and is working in the laboratory.
Larger devices, up to 30 x 30 cells, are currently being designed.

(Raibert 82b] Raibert, M.H. and .E. Tanner.
Design and Implementation of a VLSI Tactile Sensing Computer.
Robotics Researchl(3), Fall, 1982.

A new type of tactile sensor is presented that was designed to give a robot manipulation
system information about contact between its hand and objects in the environ-
ment. We describe a device that is at once a special purpose parallel computer and
a high resolution tactile array sensor. The passive substrates of earlier tactile sen-
sors have been replaced with a custom-designed very large scale integration (VLSI)
device that performs transduction, tactile image processing, and communication.
Forces are transduced using a conductive plastic technique in conjunction with
metal electrodes on the surface of an integrated circuit. An array of processors
implemented within the integrated circuit perform parallel two-dimensional con-
volutions between programmable filtering masks and a binary tactile image. Data
are then read from the array serially, so they can be transmitted to a control
computer. A 6x3 array sensor with 1 mm 2 tactile cells has been designed and
tested. It is fully functional.

In preparation for constructing large sensor arrays with hundreds of elements, the
possibility of constructing defect tolerant tactile cells was explored. Analyses based
on the Poisson model indicate that working arrays with 1,000 functional cells are
possible if computing elements are replicated within each tactile cell. Experiments
on a 3x3 array sensor with redundant pairs of computing elements suggest that
large tactile sensing arrays are within reach.

[Song 81aJ Song, S.W.
On a High-Performance VLSI Solution to Database Problm.
PhD thesis, Carnegie-Mellon University, July, 1981.
Also available as a CMU Computer Science Department technical report, VLSI Document

V075, August 1981.
This thesis explores the design and use of custom-made VLSI hardware in the area of

database problems. Our effort differs from most previous ones in that we search
for structures and algorithms, directly implementable on silicon, for the solution of
computation-intensive database problems. The types of target database systems
include the general database management systems and the design database sys-
tems. The thesis deals mainly with database systems of the relational model. One
common view concerning special-purpose hardware usage is that it perfbrms a
specific task. The proposed device is not a hardware solution to a specific problem,
but provides a number of useful data structures and basic operations. It can be
used to improve the performance of any sequential algorithm which makes exten-
sive use of such data structures and basic operations. The design is based on a few
cells, interconnected in the form of a complete binary tree. The proposed device
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can handle all the basic relational operations: select, join, project, union, and inter-
section.

(Song 81b] Song, S.W.
!/0 Complexity and Design of Special-Purpose Hardware for Sorting.
Technical Report VLSI Document V075, Carnegie Mellon University Computer Science

Department,
February, 1981.
For abstract, see Song's PhD thesis "On a High-Performance VLSI Solution to Database

Problems," 1981.

[Sproull 81a) Sproull. R.F.
Using Program Transformations to Derive Line-Drawing Algorithms.
Technical Report CMU-CS-81-117, Carnegie Mellon University Computer Science Depart-

ment,
April, 1981.

[Sproull 81b] Sproull. R. F.
Simple Color Checkpoints.
VLSI Design2(2), August, 1981.

[Sproull 81c] Sproull, R.F., I.E. Sutherland, A. Thompson, S. Gupta, and C. Minter.
The 8 x 8 Display.
Technical Report CMU-CS-82-105, Carnegie Mellon University Computer Science Depart-

ment
December, 1981.

[Steele 81] Steele, G.L.
VLSI Systems and Computations.
In Proceedings of the 1981 Conference on VLSI Systems and Computations, Carnege-

Mellon University, October, 1981.

[Sugie 84] Sugie, M., 0. Menzilcioglu, and H.T. Kung.
CARGuide--On Board Computer for Automobile Route Guidance.
In Proceedings of the 1984 National Computer Coqference, Pages 695-706. July, 1984.

[Tanner 811 Tanner, J. E., M.H. Raibert, and R. Eskenazi.
A VLSI Tactile Sensing Array Computer.
In Proceedings of the 1981 CalTech Conference on VLSI Systems, California Institute of
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